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Abstract—The effectiveness of the search is 

greatly influenced by the algorithm used, especially 

in terms of speed, accuracy, and memory usage 

efficiency. This research aims to analyze and 

compare the effectiveness of three search algorithms, 

namely linear search, binary search, and hashing, in 

finding product details by name. The research 

method used is a computational experiment with the 

implementation of the three algorithms on a dataset 

containing at least 500 products using the Python 

programming language. Each algorithm is tested 

based on search time, accuracy rate, and memory 

usage. The results showed that the hashing algorithm 

gave the best performance in terms of search speed 

and memory efficiency, while binary search also 

performed well on sorted data. Linear search, 

although simple, tends to be less efficient for large 

amounts of data. These findings can be used as a 

reference in selecting the optimal search algorithm 

according to the needs and scale of the system being 

developed. 
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I. INTRODUCTION 

In today's digital era, fast and relevant data search 

becomes an important element in improving the 

efficiency of information systems, especially in e-

commerce and inventory management. Brenner et al. 

showed that product search in e-commerce has 

unique characteristics that differ from regular 

document search. They developed a dataset and 

ranking model to reduce product ranking errors and 

showed significant improvement over the standard 

TF-IDF method [1]. 

The availability of large amounts of data demands 

a search system that is able to work efficiently, both 

in terms of speed and accuracy of results. Research 

by Abdulhayoglu and Thijs applied Locality 

Sensitive Hashing (LSH) to match millions of entries 

between Web of Science and Scopus in just under an 

hour, proving the effectiveness of hashing-based 

search methods for big data [2].In general, there are 

three commonly used search algorithms: 

Linear search is the simplest search algorithm that 

works by examining each element in the dataset 

sequentially. While it is suitable for small datasets, it 

shows sub-optimal performance on systems with 

multi-core processor architectures as it cannot utilize 

parallelism efficiently. In contrast, binary search 

exhibits higher search speed, especially on sorted 

data, and provides significant performance 

improvements on multi-core systems, with nearly 

four times the performance of linear search on quad-

core processors [3], [4]. Hash search uses hash 

functions to find elements directly with an average 

complexity of O(1), which is suitable for large 

datasets and fast access. This happens if the load 

factor is kept low enough and the hash distribution is 

good as found by Liu & Xu [5]. 

The use of efficient search algorithms greatly 

affects the performance of information systems, 

especially in managing product catalogs that continue 

to grow and change dynamically. A study by Wang 

et al. developed a learning-to-hash method that can 

improve the efficiency of k-nearest neighbor search 

with high accuracy on large-scale datasets [6]. 

Based on this background, this research aims to 

compare the effectiveness of the three search 

algorithms linear, binary, and hashing in the context 

of product search by name. The analysis will focus on 

aspects of search speed, result accuracy, and memory 

usage efficiency. The results obtained are expected to 

provide recommendations for the best 

implementation in various information system 

scenarios, both small and large scale. 

 

II. LITERATURE REVIEW 

A. Linear Search 

Linear search is the simplest algorithm that works 

by examining each element in the dataset sequentially 

until the searched element is found. It does not 

require any special prerequisites such as data sorting, 
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but has an average time complexity of O(n), making 

it less efficient for large amounts of data [3]. In 

Knuth's study [3], it was explained that despite its 

easy implementation, linear search is not 

recommended for systems with thousands to millions 

of items as the response speed drops drastically. 

B. Binary Search 

Binary search offers higher search efficiency, with 

a time complexity of O(log n). This algorithm works 

by recursively dividing the search space into two 

parts at each step, and only applies if the data is sorted 

[4]. According to Cormen et al. [4], binary search is 

very effective for large datasets that are stable and 

rarely change, as the initial sorting can be an 

additional overhead if the data is modified frequently. 

C. Hash Search 

Hash search uses a hash table data structure for 

fast searching with an average time of O(1). Product 

names are hashed into indices in an array, so the 

search can be performed directly without explicit 

iteration. However, in the event of collision-where 

two different records produce the same index-the 

search performance may degrade, especially if the 

load factor is too high. Therefore, the selection of 

collision handling strategies such as chaining or open 

addressing (e.g. linear probing) is crucial in 

maintaining efficiency [5], [7]. 

Liu and Xu [5] showed that the closed addressing 

(chaining) method tends to perform better than open 

addressing when the load factor increases, as it is able 

to maintain a near-constant search time despite 

collisions. Meanwhile, Samson [7] emphasized that 

the collision handling strategy should also consider 

system characteristics, such as storage latency, as 

complex methods may not necessarily be more 

efficient overall if the access overhead is too large. 

D. Comparison of Three Algorithms 

The comparison between the three algorithms can 

be seen from the aspects of complexity, memory 

efficiency, and terms and conditions of use. Linear 

search excels in terms of simplicity, binary search in 

terms of efficiency on sorted data, and hash search in 

terms of large data access speed [3], [4], [5]. 

 

Table 1. Comparison of three data retrieval 

algorithms 

 
 

These three algorithms play an important role in 

the product name search system on e-commerce 

platforms. Linear search can be used for free search 

on unsorted catalogs, binary search is suitable for 

searching product names in alphabetically sorted 

lists, while hash search is very efficient for direct 

product name matching in large systems that require 

fast response time. The choice of an appropriate 

algorithm depends on the catalog data structure and 

system performance requirements. 

E. Modern Supporting Studies 

Recent research using regular expressions in e-

commerce product search shows that this method can 

reduce search time by 30% and improve matching 

accuracy by about 95% compared to traditional 

methods [8]. This technique is increasingly relevant 

given the increasing complexity of data and the needs 

of modern systems. 

 

 III. METHODOLOGY 

The research method used in analyzing the 

effectiveness of searching product details by name 

using linear, binary, and hash algorithms is a 

computational experimental method with a 

quantitative approach. This research uses a minimum 

of 500 product data that each has product name and 

detail attributes, where the data is randomly 

generated using the Python programming language 

so that the experimental results are objective and 

replicable, parallel to the modern Hash Table 

experimental approach. Studies such as 

“Performance of Linear and Spiral  

Hashing Algorithms” (MDPI, 2024) also use 

randomized data of up to 1 million entries and repeat 

the experiment >100 times to be objective and 

replicable [9]. The choice of dataset size in this 

experiment is in line with common practices in 

medium-scale LSH experiments such as the study by 

Wu et al. (2020), who applied distributed LSH to 

large-scale synthetic and real datasets (hundreds of 

thousands to millions of entries) and 

comprehensively evaluated its load balancing scheme 

[10]. 

The product data is stored in a list of dictionary 

structure for linear search and binary search, and in a 

dictionary for hashing. For binary search, the data is 

first sorted by product name. Three search algorithms 

are implemented, namely linear search which 

searches the data one by one, binary search which 

searches on sorted data by dividing the search space, 

and hash search which utilizes direct access through 

Python dictionaries. 

The performance measurement of search 

algorithms was conducted through a comprehensive 

experimental approach by measuring two main 

parameters: search time and memory usage. This 

methodology was designed to provide objective and 



accurate comparisons among the three search 

algorithms investigated. 

Search time measurement was performed using 

Python's built-in time module. This method was 

chosen for its capability to provide precise time 

measurements down to the microsecond level, which 

is crucial for measuring performance differences 

between search algorithms. The measurement 

process involved recording timestamps before the 

search function execution begins using time.time(), 

then recording again after the search process 

completes. Execution time was calculated as the 

difference between the end timestamp and start 

timestamp. To ensure measurement accuracy, each 

algorithm was tested with 50 search queries randomly 

selected from the same product dataset. Each query 

was executed individually and its execution time was 

recorded separately, enabling more comprehensive 

statistical calculations including average time, 

minimum time, and maximum time for each 

algorithm. 

Memory usage monitoring was conducted using 

the memory_profiler library, which is a specialized 

tool for memory profiling in Python applications. 

This library was chosen for its ability to provide 

detailed information about memory consumption 

during program execution, including peak memory 

usage and memory overhead required by each 

algorithm. Memory profiler works by periodically 

sampling memory usage during the search process, 

providing an accurate picture of memory 

consumption patterns. The memory measurement 

methodology involved several stages: first, baseline 

memory usage of the system was recorded before the 

search algorithm was executed; second, during the 

search process, memory profiler performed real-time 

monitoring with predetermined sampling intervals; 

third, after the search process completed, peak 

memory usage and total memory overhead were 

calculated based on the collected data. Memory 

overhead was calculated as the difference between 

peak memory usage and baseline memory usage. 

Memory measurement was performed for each 

algorithm separately using identical datasets. This is 

important because each algorithm has different 

memory usage characteristics. Linear search has 

minimal memory overhead as it only requires 

sequential iteration, binary search needs additional 

memory for sorting processes if data is not pre-sorted, 

while hash search requires significant memory to 

store hash table structures. Monitoring was 

conducted during the execution of 50 search queries 

to provide a representative picture of memory usage 

under realistic operational conditions. 

To ensure the validity of measurement results, 

each algorithm was first verified to ensure that all 

implementations provided correct and consistent 

search results. Accuracy testing was performed by 

comparing search results from all three algorithms for 

the same queries, where all algorithms must return 

identical results. Measurements were conducted 

under controlled system conditions, where other 

processes that could affect performance were 

minimized. Each measurement was repeated multiple 

times to reduce the influence of external factors such 

as background processes or garbage collection that 

could affect result accuracy. Before each 

measurement session, garbage collection was 

performed to clean up unused memory and ensure 

consistent initial conditions. Measurement result data 

was stored in structured formats to facilitate 

statistical analysis and algorithm comparisons. This 

methodology follows best practices standards in 

computational experimental research to ensure 

reliable and replicable results 

The test was conducted by randomly selecting 50 

product names as search queries, then measuring the 

search time, result accuracy, and memory usage of 

each algorithm. Execution time was measured using 

the time module, while memory usage was monitored 

with memory_profiler, which is also used in 

benchmarking experiments in related literature [6]. 

All test results were analyzed descriptively and 

comparatively, an approach commonly applied for 

algorithm performance evaluation studies [11]. 

To measure the search speed, Python's built-in 

time module is used by recording the time before and 

after the search process using the time.perf_counter() 

function, so that the execution time in seconds is 

obtained with high precision. To measure the 

accuracy of the results, each search result is validated 

by matching whether the product found really 

matches the given query. This is done by comparing 

the name of the search result product with the query 

name. Meanwhile, to measure memory usage, the 

memory_profiler library is used by adding the 

@profile decorator to the search function. Memory 

consumption is measured in megabytes (MB) during 

the search process and recorded for each algorithm. 

These three metrics are used consistently in 50 

random searches of data of 500 products. 

 

IV. RESULT AND DISCUSSION 

This research uses 500 randomly generated 

product data with Python, covering a wide range of 

categories to ensure diversity of product names. The 

data was stored in a list of dictionaries for the 

implementation of Linear and Binary Search 

algorithms, as well as in a Python dictionary structure 

for Hash Search. Before Binary Search was run, the 

data was sorted alphabetically. Tests were conducted 

using 50 random product name queries with 

measurement of search time using the time module, 

monitoring memory usage with memory_profiler, 

and evaluating results descriptively and 

comparatively. Linear Search implementation uses a 



simple loop, Binary Search applies divide-and-

conquer method, while Hash Search utilizes the 

efficiency of key search in Python dictionary [6], 

[11]. 

The measurement process is carried out with three 

main indicators: search time, accuracy of results, and 

memory usage. Time measurement is carried out 

using time.perf_counter() to record the search 

duration of each algorithm. Accuracy is evaluated 

based on the match of the results to the correct data. 

Memory usage is observed with the memory_profiler 

library to record the amount of memory used by each 

algorithm during the search. This data is used as the 

basis for compiling Tables 2 to 4. 

To maintain objectivity and measurability of the 

results, the effectiveness of the three algorithms is 

evaluated based on three main indicators: search 

speed, result accuracy, and memory usage. This 

approach is in line with recent computational studies 

used in performance evaluation of search algorithms 

and large-scale information systems [6], [11].Search 

speed was measured by recording the start and end 

times of the search execution using the high-

resolution time.perf_counter() function. The final 

value used is the average of 50 searches. This 

approach is commonly used in algorithm analysis 

studies to ensure precision in execution time [11]. 

The accuracy of the results is tested by comparing 

whether the algorithm can find products that are 

indeed present in the dataset. Since all queries are 

guaranteed to be from actual data, full success 

(100%) indicates that all algorithms work correctly. 

This method was also used in the context of an e-

commerce product search system by Santosa and 

Dewi [8]. Memory usage is monitored using 

memory_profiler, which records the maximum 

memory consumption during the execution process. 

The results reflect the overhead that each algorithm 

requires when managing the data structure and 

executing the search. This evaluation of memory 

efficiency is important for large-scale systems, as 

highlighted in the research by Wang et al. [6]. 

A. Search Time Comparison Testing 

Search time testing was conducted with 50 

randomly selected queries from a total of at least 500 

product data. The search time measurement results 

are presented in Table 2. 

 

Table 2. Comparison of Search Time (in seconds) 

 

 
Figure 1. Comparison of Search Time (in seconds) 

 

The results show significant performance differences 

between the three algorithms. Hash Search has the 

fastest search time with an average of (0.00001 - 

0.0001 seconds), followed by binary search with 

(0.001 - 0.005 seconds), and linear search is the 

slowest with (0.010 - 0.020 seconds). Hash search 

shows high consistency, indicating good 

performance stability. 

B. Accuracy testing 

Accuracy testing is done by verifying whether the 

algorithm can find products that actually exist in the 

dataset. The results of accuracy testing are presented 

in Table 3. 

Table 3. Accuracy Testing Results 

 
All three algorithms showed 100% accuracy in 

finding the searched products, proving that the 

implementation has been done correctly. 

C. Memory usage testing 

Memory usage was measured to determine the 

memory efficiency of each algorithm. The 

measurement results are presented in Table 4. 

Table 4. Comparison of Memory Usage 

 

 
Figure 2. Comparison of Memory Usage 



Linear search is most efficient in memory usage 

with an overhead of only 0.2 MB, followed by Binary 

Search at around 0.3 MB. In contrast, Hash Search 

requires an additional 3.5 MB of memory to store the 

hash table structure, mainly due to complex collision 

handling. Memory consumption and collision 

handling strategies greatly affect the efficiency of 

hash-based indexation [7]. 

The results showed significant differences in the 

performance of the three search algorithms. Hash 

Search provides the best performance with O(1) 

complexity, allowing direct data access without 

iteration. This access speed remains stable over 

various dataset sizes, proving its effectiveness for 

applications with fast response requirements such as 

e-commerce systems. However, this advantage 

comes at the cost of much larger memory usage 

compared to Linear Search and Binary Search. 

The main trade-off in using Hash Search lies in 

the trade-off between data access speed and memory 

efficiency. Although it requires additional memory, 

its advantage of consistent and fast search makes it 

ideal for large-scale systems with high search 

volumes. In the context of e-commerce systems, the 

speed of accessing information such as product, 

transaction, or stock data is crucial to maintain 

responsiveness and user satisfaction. Higher memory 

overhead is considered reasonable as long as the 

system has sufficient resources. This is in line with 

the findings of W. B. Samson who emphasized that 

collision handling in hash structures-despite 

increasing memory usage-can be optimized to remain 

efficient, even on storage media with high latency [7]. 

Binary search performs well with O(log n) 

complexity, providing a balance between speed and 

memory efficiency. It remains efficient on large 

datasets with minimal increase in time, but requires 

the data to be in an ordered state which can be an 

additional overhead if the data changes frequently. 

The advantage of binary search lies in its ability to 

maintain good performance without requiring 

significant additional memory. 

Linear search, despite having the weakest 

performance, offers the best implementation 

simplicity and memory efficiency. The O(n) 

complexity causes significant performance 

degradation on large datasets, but for small datasets 

or systems with memory limitations, this algorithm is 

still relevant. Ease of maintenance and no special 

requirements for data structures are advantages in 

certain contexts.  

Overall, the selection of a search algorithm largely 

depends on the trade-off between speed, memory 

efficiency, and implementation complexity. Hash 

Search is optimal for systems with fast access 

requirements and sufficient memory resources, such 

as e-commerce. Binary Search is suitable for systems 

with structured data that can be maintained in an 

ordered state, such as inventory systems. Linear 

Search is still relevant for systems with small datasets 

or extreme memory limitations, where simplicity and 

flexibility take precedence over performance. 

 

V. CONCLUSION 

Based on the results of research on the 

effectiveness of searching for products by name using 

linear search, binary search, and hash search 

algorithms, it is concluded that the choice of search 

algorithm has a significant impact on system 

performance. The hash search algorithm proved to be 

the most superior in terms of search speed and 

performance stability of the system, although it 

requires more memory. Meanwhile, binary search 

offers a good balance between speed and memory 

efficiency, provided that the data is sorted. On the 

other hand, linear search is an easy and low-memory 

option, but it is not efficient for large datasets. 

Each algorithm has its own advantages and 

disadvantages. Therefore, the selection of the most 

appropriate search algorithm needs to be adjusted to 

the system needs, dataset size, data structure, and 

resources. This research provides a comparative 

overview that can be used as a guideline in designing 

an efficient product search system that is appropriate 

for the context in which it is used. 
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