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Abstract—The effectiveness of the search is
greatly influenced by the algorithm used, especially
in terms of speed, accuracy, and memory usage
efficiency. This research aims to analyze and
compare the effectiveness of three search algorithms,
namely linear search, binary search, and hashing, in
finding product details by name. The research
method used is a computational experiment with the
implementation of the three algorithms on a dataset
containing at least 500 products using the Python
programming language. Each algorithm is tested
based on search time, accuracy rate, and memory
usage. The results showed that the hashing algorithm
gave the best performance in terms of search speed
and memory efficiency, while binary search also
performed well on sorted data. Linear search,
although simple, tends to be less efficient for large
amounts of data. These findings can be used as a
reference in selecting the optimal search algorithm
according to the needs and scale of the system being
developed.
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I.INTRODUCTION

In today's digital era, fast and relevant data search
becomes an important element in improving the
efficiency of information systems, especially in e-
commerce and inventory management. Brenner et al.
showed that product search in e-commerce has
unique characteristics that differ from regular
document search. They developed a dataset and
ranking model to reduce product ranking errors and
showed significant improvement over the standard
TF-IDF method [1].

The availability of large amounts of data demands
a search system that is able to work efficiently, both
in terms of speed and accuracy of results. Research
by Abdulhayoglu and Thijs applied Locality
Sensitive Hashing (LSH) to match millions of entries
between Web of Science and Scopus in just under an

hour, proving the effectiveness of hashing-based
search methods for big data [2].In general, there are
three commonly used search algorithms:

Linear search is the simplest search algorithm that
works by examining each element in the dataset
sequentially. While it is suitable for small datasets, it
shows sub-optimal performance on systems with
multi-core processor architectures as it cannot utilize
parallelism efficiently. In contrast, binary search
exhibits higher search speed, especially on sorted
data, and provides significant performance
improvements on multi-core systems, with nearly
four times the performance of linear search on quad-
core processors [3], [4]. Hash search uses hash
functions to find elements directly with an average
complexity of O(1), which is suitable for large
datasets and fast access. This happens if the load
factor is kept low enough and the hash distribution is
good as found by Liu & Xu [5].

The use of efficient search algorithms greatly
affects the performance of information systems,
especially in managing product catalogs that continue
to grow and change dynamically. A study by Wang
et al. developed a learning-to-hash method that can
improve the efficiency of k-nearest neighbor search
with high accuracy on large-scale datasets [6].

Based on this background, this research aims to
compare the effectiveness of the three search
algorithms linear, binary, and hashing in the context
of product search by name. The analysis will focus on
aspects of search speed, result accuracy, and memory
usage efficiency. The results obtained are expected to
provide  recommendations  for  the  best
implementation in various information system
scenarios, both small and large scale.

II. LITERATURE REVIEW
A. Linear Search
Linear search is the simplest algorithm that works
by examining each element in the dataset sequentially
until the searched element is found. It does not
require any special prerequisites such as data sorting,
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but has an average time complexity of O(n), making
it less efficient for large amounts of data [3]. In
Knuth's study [3], it was explained that despite its
easy implementation, linear search is not
recommended for systems with thousands to millions
of items as the response speed drops drastically.

B. Binary Search

Binary search offers higher search efficiency, with
a time complexity of O(log n). This algorithm works
by recursively dividing the search space into two
parts at each step, and only applies if the data is sorted
[4]. According to Cormen et al. [4], binary search is
very effective for large datasets that are stable and
rarely change, as the initial sorting can be an
additional overhead if the data is modified frequently.
C. Hash Search

Hash search uses a hash table data structure for
fast searching with an average time of O(1). Product
names are hashed into indices in an array, so the
search can be performed directly without explicit
iteration. However, in the event of collision-where
two different records produce the same index-the
search performance may degrade, especially if the
load factor is too high. Therefore, the selection of
collision handling strategies such as chaining or open
addressing (e.g. linear probing) is crucial in
maintaining efficiency [5], [7].

Liu and Xu [5] showed that the closed addressing
(chaining) method tends to perform better than open
addressing when the load factor increases, as it is able
to maintain a near-constant search time despite
collisions. Meanwhile, Samson [7] emphasized that
the collision handling strategy should also consider
system characteristics, such as storage latency, as
complex methods may not necessarily be more
efficient overall if the access overhead is too large.
D. Comparison of Three Algorithms

The comparison between the three algorithms can
be seen from the aspects of complexity, memory
efficiency, and terms and conditions of use. Linear
search excels in terms of simplicity, binary search in
terms of efficiency on sorted data, and hash search in
terms of large data access speed [3], [4], [5].

Table 1. Comparison of three data retrieval

algorithms
Algurilhm .n\\'urugu Data Pros Disadva ntages
Complexity | Requirements
Linear Qin) Not necessary Simple, Slow for big
Search casy to data
implement
Binary O(log n) Data must be Fast for Sorting
Search sorted large overhead
datasets if
the data is
sorted
Hash (1) - Very fast Need more
Search if the hash | memory, prone
table is to collisions
optimized

These three algorithms play an important role in
the product name search system on e-commerce
platforms. Linear search can be used for free search
on unsorted catalogs, binary search is suitable for
searching product names in alphabetically sorted
lists, while hash search is very efficient for direct
product name matching in large systems that require
fast response time. The choice of an appropriate
algorithm depends on the catalog data structure and
system performance requirements.

E. Modern Supporting Studies

Recent research using regular expressions in e-
commerce product search shows that this method can
reduce search time by 30% and improve matching
accuracy by about 95% compared to traditional
methods [8]. This technique is increasingly relevant
given the increasing complexity of data and the needs
of modern systems.

III. METHODOLOGY

The research method used in analyzing the
effectiveness of searching product details by name
using linear, binary, and hash algorithms is a
computational experimental method with a
quantitative approach. This research uses a minimum
of 500 product data that each has product name and
detail attributes, where the data is randomly
generated using the Python programming language
so that the experimental results are objective and
replicable, parallel to the modern Hash Table
experimental ~ approach.  Studies such as
“Performance of Linear and Spiral

Hashing Algorithms” (MDPI, 2024) also use
randomized data of up to 1 million entries and repeat
the experiment >100 times to be objective and
replicable [9]. The choice of dataset size in this
experiment is in line with common practices in
medium-scale LSH experiments such as the study by
Wu et al. (2020), who applied distributed LSH to
large-scale synthetic and real datasets (hundreds of
thousands to  millions of entries) and
comprehensively evaluated its load balancing scheme
[10].

The product data is stored in a list of dictionary
structure for linear search and binary search, and in a
dictionary for hashing. For binary search, the data is
first sorted by product name. Three search algorithms
are implemented, namely linear search which
searches the data one by one, binary search which
searches on sorted data by dividing the search space,
and hash search which utilizes direct access through
Python dictionaries.

The performance measurement of search
algorithms was conducted through a comprehensive
experimental approach by measuring two main
parameters: search time and memory usage. This
methodology was designed to provide objective and



accurate comparisons among the three search
algorithms investigated.

Search time measurement was performed using
Python's built-in time module. This method was
chosen for its capability to provide precise time
measurements down to the microsecond level, which
is crucial for measuring performance differences
between search algorithms. The measurement
process involved recording timestamps before the
search function execution begins using time.time(),
then recording again after the search process
completes. Execution time was calculated as the
difference between the end timestamp and start
timestamp. To ensure measurement accuracy, each
algorithm was tested with 50 search queries randomly
selected from the same product dataset. Each query
was executed individually and its execution time was
recorded separately, enabling more comprehensive
statistical calculations including average time,
minimum time, and maximum time for each
algorithm.

Memory usage monitoring was conducted using
the memory_profiler library, which is a specialized
tool for memory profiling in Python applications.
This library was chosen for its ability to provide
detailed information about memory consumption
during program execution, including peak memory
usage and memory overhead required by each
algorithm. Memory profiler works by periodically
sampling memory usage during the search process,
providing an accurate picture of memory
consumption patterns. The memory measurement
methodology involved several stages: first, baseline
memory usage of the system was recorded before the
search algorithm was executed; second, during the
search process, memory profiler performed real-time
monitoring with predetermined sampling intervals;
third, after the search process completed, peak
memory usage and total memory overhead were
calculated based on the collected data. Memory
overhead was calculated as the difference between
peak memory usage and baseline memory usage.

Memory measurement was performed for each
algorithm separately using identical datasets. This is
important because each algorithm has different
memory usage characteristics. Linear search has
minimal memory overhead as it only requires
sequential iteration, binary search needs additional
memory for sorting processes if data is not pre-sorted,
while hash search requires significant memory to
store hash table structures. Monitoring was
conducted during the execution of 50 search queries
to provide a representative picture of memory usage
under realistic operational conditions.

To ensure the validity of measurement results,
each algorithm was first verified to ensure that all
implementations provided correct and consistent
search results. Accuracy testing was performed by

comparing search results from all three algorithms for
the same queries, where all algorithms must return
identical results. Measurements were conducted
under controlled system conditions, where other
processes that could affect performance were
minimized. Each measurement was repeated multiple
times to reduce the influence of external factors such
as background processes or garbage collection that
could affect result accuracy. Before each
measurement session, garbage collection was
performed to clean up unused memory and ensure
consistent initial conditions. Measurement result data
was stored in structured formats to facilitate
statistical analysis and algorithm comparisons. This
methodology follows best practices standards in
computational experimental research to ensure
reliable and replicable results

The test was conducted by randomly selecting 50
product names as search queries, then measuring the
search time, result accuracy, and memory usage of
each algorithm. Execution time was measured using
the time module, while memory usage was monitored
with memory profiler, which is also used in
benchmarking experiments in related literature [6].
All test results were analyzed descriptively and
comparatively, an approach commonly applied for
algorithm performance evaluation studies [11].

To measure the search speed, Python's built-in
time module is used by recording the time before and
after the search process using the time.perf counter()
function, so that the execution time in seconds is
obtained with high precision. To measure the
accuracy of the results, each search result is validated
by matching whether the product found really
matches the given query. This is done by comparing
the name of the search result product with the query
name. Meanwhile, to measure memory usage, the
memory_profiler library is used by adding the
@profile decorator to the search function. Memory
consumption is measured in megabytes (MB) during
the search process and recorded for each algorithm.
These three metrics are used consistently in 50
random searches of data of 500 products.

IV. RESULT AND DISCUSSION

This research uses 500 randomly generated
product data with Python, covering a wide range of
categories to ensure diversity of product names. The
data was stored in a list of dictionaries for the
implementation of Linear and Binary Search
algorithms, as well as in a Python dictionary structure
for Hash Search. Before Binary Search was run, the
data was sorted alphabetically. Tests were conducted
using 50 random product name queries with
measurement of search time using the time module,
monitoring memory usage with memory_ profiler,
and evaluating results  descriptively and
comparatively. Linear Search implementation uses a



simple loop, Binary Search applies divide-and-
conquer method, while Hash Search utilizes the
efficiency of key search in Python dictionary [6],
[11].

The measurement process is carried out with three
main indicators: search time, accuracy of results, and
memory usage. Time measurement is carried out
using time.perf counter() to record the search
duration of each algorithm. Accuracy is evaluated
based on the match of the results to the correct data.
Memory usage is observed with the memory_profiler
library to record the amount of memory used by each
algorithm during the search. This data is used as the
basis for compiling Tables 2 to 4.

To maintain objectivity and measurability of the
results, the effectiveness of the three algorithms is
evaluated based on three main indicators: search
speed, result accuracy, and memory usage. This
approach is in line with recent computational studies
used in performance evaluation of search algorithms
and large-scale information systems [6], [11].Search
speed was measured by recording the start and end
times of the search execution using the high-
resolution time.perf counter() function. The final
value used is the average of 50 searches. This
approach is commonly used in algorithm analysis
studies to ensure precision in execution time [11].

The accuracy of the results is tested by comparing
whether the algorithm can find products that are
indeed present in the dataset. Since all queries are
guaranteed to be from actual data, full success
(100%) indicates that all algorithms work correctly.
This method was also used in the context of an e-
commerce product search system by Santosa and
Dewi [8]. Memory usage is monitored using
memory_ profiler, which records the maximum
memory consumption during the execution process.
The results reflect the overhead that each algorithm
requires when managing the data structure and
executing the search. This evaluation of memory
efficiency is important for large-scale systems, as
highlighted in the research by Wang et al. [6].

A. Search Time Comparison Testing

Search time testing was conducted with 50
randomly selected queries from a total of at least 500
product data. The search time measurement results
are presented in Table 2.

Table 2. Comparison of Search Time (in seconds)

Algorithm Time Average Description
complexity search time
(seconds)
Linear Search O(n) 0.010-0,020 Search one by
one until
found,
inefficient for
big data
Binary Search Oflog n) 0.001-0,005 Fast on sorted
data, but
cannot be
used on
random data
Hash Scarch o(l) 0,00001- Fastest, using
0,0001 Python
dictionaries,
very efficient
for big data
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Figure 1. Comparison of Search Time (in seconds)

The results show significant performance differences
between the three algorithms. Hash Search has the
fastest search time with an average of (0.00001 -
0.0001 seconds), followed by binary search with
(0.001 - 0.005 seconds), and linear search is the
slowest with (0.010 - 0.020 seconds). Hash search
shows  high consistency, indicating  good
performance stability.
B. Accuracy testing

Accuracy testing is done by verifying whether the
algorithm can find products that actually exist in the
dataset. The results of accuracy testing are presented
in Table 3.

Table 3. Accuracy Testing Results

Algorithm | Total | Correct | False | Accuracy (%)
query result result

Linear 50 50 0 100
Search
Binary 50 50 0 100
Search

Hash 50 50 0 100
Search

All three algorithms showed 100% accuracy in
finding the searched products, proving that the
implementation has been done correctly.
C. Memory usage testing

Memory usage was measured to determine the
memory efficiency of each algorithm. The
measurement results are presented in Table 4.

Table 4. Comparison of Memory Usage

Algorithm | Initial Peak Overhead | Memory
memory | memory (mb) efficiency
(mb) (mb)
Linear 15.2 154 0,2 Highly
Search efficient
Binary 15.2 15,5 0.3 efficient
Search
Hash 15.2 18,7 35 efficient
Search enough
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Figure 2. Comparison of Memory Usage



Linear search is most efficient in memory usage
with an overhead of only 0.2 MB, followed by Binary
Search at around 0.3 MB. In contrast, Hash Search
requires an additional 3.5 MB of memory to store the
hash table structure, mainly due to complex collision
handling. Memory consumption and collision
handling strategies greatly affect the efficiency of
hash-based indexation [7].

The results showed significant differences in the
performance of the three search algorithms. Hash
Search provides the best performance with O(1)
complexity, allowing direct data access without
iteration. This access speed remains stable over
various dataset sizes, proving its effectiveness for
applications with fast response requirements such as
e-commerce systems. However, this advantage
comes at the cost of much larger memory usage
compared to Linear Search and Binary Search.

The main trade-off in using Hash Search lies in
the trade-off between data access speed and memory
efficiency. Although it requires additional memory,
its advantage of consistent and fast search makes it
ideal for large-scale systems with high search
volumes. In the context of e-commerce systems, the
speed of accessing information such as product,
transaction, or stock data is crucial to maintain
responsiveness and user satisfaction. Higher memory
overhead is considered reasonable as long as the
system has sufficient resources. This is in line with
the findings of W. B. Samson who emphasized that
collision handling in hash structures-despite
increasing memory usage-can be optimized to remain
efficient, even on storage media with high latency [7].
Binary search performs well with O(log n)
complexity, providing a balance between speed and
memory efficiency. It remains efficient on large
datasets with minimal increase in time, but requires
the data to be in an ordered state which can be an
additional overhead if the data changes frequently.
The advantage of binary search lies in its ability to
maintain good performance without requiring
significant additional memory.

Linear search, despite having the weakest
performance, offers the best implementation
simplicity and memory efficiency. The O(n)
complexity  causes  significant  performance
degradation on large datasets, but for small datasets
or systems with memory limitations, this algorithm is
still relevant. Ease of maintenance and no special
requirements for data structures are advantages in
certain contexts.

Overall, the selection of a search algorithm largely
depends on the trade-off between speed, memory
efficiency, and implementation complexity. Hash
Search is optimal for systems with fast access
requirements and sufficient memory resources, such
as e-commerce. Binary Search is suitable for systems
with structured data that can be maintained in an

ordered state, such as inventory systems. Linear
Search is still relevant for systems with small datasets
or extreme memory limitations, where simplicity and
flexibility take precedence over performance.

V. CONCLUSION

Based on the results of research on the
effectiveness of searching for products by name using
linear search, binary search, and hash search
algorithms, it is concluded that the choice of search
algorithm has a significant impact on system
performance. The hash search algorithm proved to be
the most superior in terms of search speed and
performance stability of the system, although it
requires more memory. Meanwhile, binary search
offers a good balance between speed and memory
efficiency, provided that the data is sorted. On the
other hand, linear search is an easy and low-memory
option, but it is not efficient for large datasets.

Each algorithm has its own advantages and
disadvantages. Therefore, the selection of the most
appropriate search algorithm needs to be adjusted to
the system needs, dataset size, data structure, and
resources. This research provides a comparative
overview that can be used as a guideline in designing
an efficient product search system that is appropriate
for the context in which it is used.
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