
Product Detail Search Effectiveness Analysis

Based on Name Using Linear, Binary, and

Hash Algorithms

Dias Pradana Daniswara[1], Dewi Berliana[2], Muhammad Noor Abizar[3],

Lazuardi Akbar Imani[4], Azis Suroni[5]

State University of Surabaya

{2411814001, 24111814003, 24111814105, 24111814119}@mhs.unesa.ac.id [1][2][3][4],

azissuroni@unesa.ac.id[5]

Abstract—The effectiveness of the search is

greatly influenced by the algorithm used, especially

in terms of speed, accuracy, and memory usage

efficiency. This research aims to analyze and

compare the effectiveness of three search algorithms,

namely linear search, binary search, and hashing, in

finding product details by name. The research

method used is a computational experiment with the

implementation of the three algorithms on a dataset

containing at least 500 products using the Python

programming language. Each algorithm is tested

based on search time, accuracy rate, and memory

usage. The results showed that the hashing algorithm

gave the best performance in terms of search speed

and memory efficiency, while binary search also

performed well on sorted data. Linear search,

although simple, tends to be less efficient for large

amounts of data. These findings can be used as a

reference in selecting the optimal search algorithm

according to the needs and scale of the system being

developed.

Keywords—Data Retrieval, Linear Search

Algorithm, Binary Search, Hashing, Efficiency.

I. INTRODUCTION

In today's digital era, fast and relevant data search

becomes an important element in improving the

efficiency of information systems, especially in e-

commerce and inventory management. Brenner et al.

showed that product search in e-commerce has

unique characteristics that differ from regular

document search. They developed a dataset and

ranking model to reduce product ranking errors and

showed significant improvement over the standard

TF-IDF method [1].

The availability of large amounts of data demands

a search system that is able to work efficiently, both

in terms of speed and accuracy of results. Research

by Abdulhayoglu and Thijs applied Locality

Sensitive Hashing (LSH) to match millions of entries

between Web of Science and Scopus in just under an

hour, proving the effectiveness of hashing-based

search methods for big data [2].In general, there are

three commonly used search algorithms:

Linear search is the simplest search algorithm that

works by examining each element in the dataset

sequentially. While it is suitable for small datasets, it

shows sub-optimal performance on systems with

multi-core processor architectures as it cannot utilize

parallelism efficiently. In contrast, binary search

exhibits higher search speed, especially on sorted

data, and provides significant performance

improvements on multi-core systems, with nearly

four times the performance of linear search on quad-

core processors [3], [4]. Hash search uses hash

functions to find elements directly with an average

complexity of O(1), which is suitable for large

datasets and fast access. This happens if the load

factor is kept low enough and the hash distribution is

good as found by Liu & Xu [5].

The use of efficient search algorithms greatly

affects the performance of information systems,

especially in managing product catalogs that continue

to grow and change dynamically. A study by Wang

et al. developed a learning-to-hash method that can

improve the efficiency of k-nearest neighbor search

with high accuracy on large-scale datasets [6].

Based on this background, this research aims to

compare the effectiveness of the three search

algorithms linear, binary, and hashing in the context

of product search by name. The analysis will focus on

aspects of search speed, result accuracy, and memory

usage efficiency. The results obtained are expected to

provide recommendations for the best

implementation in various information system

scenarios, both small and large scale.

II. LITERATURE REVIEW

A. Linear Search

Linear search is the simplest algorithm that works

by examining each element in the dataset sequentially

until the searched element is found. It does not

require any special prerequisites such as data sorting,

mailto:%7d@mhs.unesa.ac.id

but has an average time complexity of O(n), making

it less efficient for large amounts of data [3]. In

Knuth's study [3], it was explained that despite its

easy implementation, linear search is not

recommended for systems with thousands to millions

of items as the response speed drops drastically.

B. Binary Search

Binary search offers higher search efficiency, with

a time complexity of O(log n). This algorithm works

by recursively dividing the search space into two

parts at each step, and only applies if the data is sorted

[4]. According to Cormen et al. [4], binary search is

very effective for large datasets that are stable and

rarely change, as the initial sorting can be an

additional overhead if the data is modified frequently.

C. Hash Search

Hash search uses a hash table data structure for

fast searching with an average time of O(1). Product

names are hashed into indices in an array, so the

search can be performed directly without explicit

iteration. However, in the event of collision-where

two different records produce the same index-the

search performance may degrade, especially if the

load factor is too high. Therefore, the selection of

collision handling strategies such as chaining or open

addressing (e.g. linear probing) is crucial in

maintaining efficiency [5], [7].

Liu and Xu [5] showed that the closed addressing

(chaining) method tends to perform better than open

addressing when the load factor increases, as it is able

to maintain a near-constant search time despite

collisions. Meanwhile, Samson [7] emphasized that

the collision handling strategy should also consider

system characteristics, such as storage latency, as

complex methods may not necessarily be more

efficient overall if the access overhead is too large.

D. Comparison of Three Algorithms

The comparison between the three algorithms can

be seen from the aspects of complexity, memory

efficiency, and terms and conditions of use. Linear

search excels in terms of simplicity, binary search in

terms of efficiency on sorted data, and hash search in

terms of large data access speed [3], [4], [5].

Table 1. Comparison of three data retrieval

algorithms

These three algorithms play an important role in

the product name search system on e-commerce

platforms. Linear search can be used for free search

on unsorted catalogs, binary search is suitable for

searching product names in alphabetically sorted

lists, while hash search is very efficient for direct

product name matching in large systems that require

fast response time. The choice of an appropriate

algorithm depends on the catalog data structure and

system performance requirements.

E. Modern Supporting Studies

Recent research using regular expressions in e-

commerce product search shows that this method can

reduce search time by 30% and improve matching

accuracy by about 95% compared to traditional

methods [8]. This technique is increasingly relevant

given the increasing complexity of data and the needs

of modern systems.

 III. METHODOLOGY

The research method used in analyzing the

effectiveness of searching product details by name

using linear, binary, and hash algorithms is a

computational experimental method with a

quantitative approach. This research uses a minimum

of 500 product data that each has product name and

detail attributes, where the data is randomly

generated using the Python programming language

so that the experimental results are objective and

replicable, parallel to the modern Hash Table

experimental approach. Studies such as

“Performance of Linear and Spiral

Hashing Algorithms” (MDPI, 2024) also use

randomized data of up to 1 million entries and repeat

the experiment >100 times to be objective and

replicable [9]. The choice of dataset size in this

experiment is in line with common practices in

medium-scale LSH experiments such as the study by

Wu et al. (2020), who applied distributed LSH to

large-scale synthetic and real datasets (hundreds of

thousands to millions of entries) and

comprehensively evaluated its load balancing scheme

[10].

The product data is stored in a list of dictionary

structure for linear search and binary search, and in a

dictionary for hashing. For binary search, the data is

first sorted by product name. Three search algorithms

are implemented, namely linear search which

searches the data one by one, binary search which

searches on sorted data by dividing the search space,

and hash search which utilizes direct access through

Python dictionaries.

The performance measurement of search

algorithms was conducted through a comprehensive

experimental approach by measuring two main

parameters: search time and memory usage. This

methodology was designed to provide objective and

accurate comparisons among the three search

algorithms investigated.

Search time measurement was performed using

Python's built-in time module. This method was

chosen for its capability to provide precise time

measurements down to the microsecond level, which

is crucial for measuring performance differences

between search algorithms. The measurement

process involved recording timestamps before the

search function execution begins using time.time(),

then recording again after the search process

completes. Execution time was calculated as the

difference between the end timestamp and start

timestamp. To ensure measurement accuracy, each

algorithm was tested with 50 search queries randomly

selected from the same product dataset. Each query

was executed individually and its execution time was

recorded separately, enabling more comprehensive

statistical calculations including average time,

minimum time, and maximum time for each

algorithm.

Memory usage monitoring was conducted using

the memory_profiler library, which is a specialized

tool for memory profiling in Python applications.

This library was chosen for its ability to provide

detailed information about memory consumption

during program execution, including peak memory

usage and memory overhead required by each

algorithm. Memory profiler works by periodically

sampling memory usage during the search process,

providing an accurate picture of memory

consumption patterns. The memory measurement

methodology involved several stages: first, baseline

memory usage of the system was recorded before the

search algorithm was executed; second, during the

search process, memory profiler performed real-time

monitoring with predetermined sampling intervals;

third, after the search process completed, peak

memory usage and total memory overhead were

calculated based on the collected data. Memory

overhead was calculated as the difference between

peak memory usage and baseline memory usage.

Memory measurement was performed for each

algorithm separately using identical datasets. This is

important because each algorithm has different

memory usage characteristics. Linear search has

minimal memory overhead as it only requires

sequential iteration, binary search needs additional

memory for sorting processes if data is not pre-sorted,

while hash search requires significant memory to

store hash table structures. Monitoring was

conducted during the execution of 50 search queries

to provide a representative picture of memory usage

under realistic operational conditions.

To ensure the validity of measurement results,

each algorithm was first verified to ensure that all

implementations provided correct and consistent

search results. Accuracy testing was performed by

comparing search results from all three algorithms for

the same queries, where all algorithms must return

identical results. Measurements were conducted

under controlled system conditions, where other

processes that could affect performance were

minimized. Each measurement was repeated multiple

times to reduce the influence of external factors such

as background processes or garbage collection that

could affect result accuracy. Before each

measurement session, garbage collection was

performed to clean up unused memory and ensure

consistent initial conditions. Measurement result data

was stored in structured formats to facilitate

statistical analysis and algorithm comparisons. This

methodology follows best practices standards in

computational experimental research to ensure

reliable and replicable results

The test was conducted by randomly selecting 50

product names as search queries, then measuring the

search time, result accuracy, and memory usage of

each algorithm. Execution time was measured using

the time module, while memory usage was monitored

with memory_profiler, which is also used in

benchmarking experiments in related literature [6].

All test results were analyzed descriptively and

comparatively, an approach commonly applied for

algorithm performance evaluation studies [11].

To measure the search speed, Python's built-in

time module is used by recording the time before and

after the search process using the time.perf_counter()

function, so that the execution time in seconds is

obtained with high precision. To measure the

accuracy of the results, each search result is validated

by matching whether the product found really

matches the given query. This is done by comparing

the name of the search result product with the query

name. Meanwhile, to measure memory usage, the

memory_profiler library is used by adding the

@profile decorator to the search function. Memory

consumption is measured in megabytes (MB) during

the search process and recorded for each algorithm.

These three metrics are used consistently in 50

random searches of data of 500 products.

IV. RESULT AND DISCUSSION

This research uses 500 randomly generated

product data with Python, covering a wide range of

categories to ensure diversity of product names. The

data was stored in a list of dictionaries for the

implementation of Linear and Binary Search

algorithms, as well as in a Python dictionary structure

for Hash Search. Before Binary Search was run, the

data was sorted alphabetically. Tests were conducted

using 50 random product name queries with

measurement of search time using the time module,

monitoring memory usage with memory_profiler,

and evaluating results descriptively and

comparatively. Linear Search implementation uses a

simple loop, Binary Search applies divide-and-

conquer method, while Hash Search utilizes the

efficiency of key search in Python dictionary [6],

[11].

The measurement process is carried out with three

main indicators: search time, accuracy of results, and

memory usage. Time measurement is carried out

using time.perf_counter() to record the search

duration of each algorithm. Accuracy is evaluated

based on the match of the results to the correct data.

Memory usage is observed with the memory_profiler

library to record the amount of memory used by each

algorithm during the search. This data is used as the

basis for compiling Tables 2 to 4.

To maintain objectivity and measurability of the

results, the effectiveness of the three algorithms is

evaluated based on three main indicators: search

speed, result accuracy, and memory usage. This

approach is in line with recent computational studies

used in performance evaluation of search algorithms

and large-scale information systems [6], [11].Search

speed was measured by recording the start and end

times of the search execution using the high-

resolution time.perf_counter() function. The final

value used is the average of 50 searches. This

approach is commonly used in algorithm analysis

studies to ensure precision in execution time [11].

The accuracy of the results is tested by comparing

whether the algorithm can find products that are

indeed present in the dataset. Since all queries are

guaranteed to be from actual data, full success

(100%) indicates that all algorithms work correctly.

This method was also used in the context of an e-

commerce product search system by Santosa and

Dewi [8]. Memory usage is monitored using

memory_profiler, which records the maximum

memory consumption during the execution process.

The results reflect the overhead that each algorithm

requires when managing the data structure and

executing the search. This evaluation of memory

efficiency is important for large-scale systems, as

highlighted in the research by Wang et al. [6].

A. Search Time Comparison Testing

Search time testing was conducted with 50

randomly selected queries from a total of at least 500

product data. The search time measurement results

are presented in Table 2.

Table 2. Comparison of Search Time (in seconds)

Figure 1. Comparison of Search Time (in seconds)

The results show significant performance differences

between the three algorithms. Hash Search has the

fastest search time with an average of (0.00001 -

0.0001 seconds), followed by binary search with

(0.001 - 0.005 seconds), and linear search is the

slowest with (0.010 - 0.020 seconds). Hash search

shows high consistency, indicating good

performance stability.

B. Accuracy testing

Accuracy testing is done by verifying whether the

algorithm can find products that actually exist in the

dataset. The results of accuracy testing are presented

in Table 3.

Table 3. Accuracy Testing Results

All three algorithms showed 100% accuracy in

finding the searched products, proving that the

implementation has been done correctly.

C. Memory usage testing

Memory usage was measured to determine the

memory efficiency of each algorithm. The

measurement results are presented in Table 4.

Table 4. Comparison of Memory Usage

Figure 2. Comparison of Memory Usage

Linear search is most efficient in memory usage

with an overhead of only 0.2 MB, followed by Binary

Search at around 0.3 MB. In contrast, Hash Search

requires an additional 3.5 MB of memory to store the

hash table structure, mainly due to complex collision

handling. Memory consumption and collision

handling strategies greatly affect the efficiency of

hash-based indexation [7].

The results showed significant differences in the

performance of the three search algorithms. Hash

Search provides the best performance with O(1)

complexity, allowing direct data access without

iteration. This access speed remains stable over

various dataset sizes, proving its effectiveness for

applications with fast response requirements such as

e-commerce systems. However, this advantage

comes at the cost of much larger memory usage

compared to Linear Search and Binary Search.

The main trade-off in using Hash Search lies in

the trade-off between data access speed and memory

efficiency. Although it requires additional memory,

its advantage of consistent and fast search makes it

ideal for large-scale systems with high search

volumes. In the context of e-commerce systems, the

speed of accessing information such as product,

transaction, or stock data is crucial to maintain

responsiveness and user satisfaction. Higher memory

overhead is considered reasonable as long as the

system has sufficient resources. This is in line with

the findings of W. B. Samson who emphasized that

collision handling in hash structures-despite

increasing memory usage-can be optimized to remain

efficient, even on storage media with high latency [7].

Binary search performs well with O(log n)

complexity, providing a balance between speed and

memory efficiency. It remains efficient on large

datasets with minimal increase in time, but requires

the data to be in an ordered state which can be an

additional overhead if the data changes frequently.

The advantage of binary search lies in its ability to

maintain good performance without requiring

significant additional memory.

Linear search, despite having the weakest

performance, offers the best implementation

simplicity and memory efficiency. The O(n)

complexity causes significant performance

degradation on large datasets, but for small datasets

or systems with memory limitations, this algorithm is

still relevant. Ease of maintenance and no special

requirements for data structures are advantages in

certain contexts.

Overall, the selection of a search algorithm largely

depends on the trade-off between speed, memory

efficiency, and implementation complexity. Hash

Search is optimal for systems with fast access

requirements and sufficient memory resources, such

as e-commerce. Binary Search is suitable for systems

with structured data that can be maintained in an

ordered state, such as inventory systems. Linear

Search is still relevant for systems with small datasets

or extreme memory limitations, where simplicity and

flexibility take precedence over performance.

V. CONCLUSION

Based on the results of research on the

effectiveness of searching for products by name using

linear search, binary search, and hash search

algorithms, it is concluded that the choice of search

algorithm has a significant impact on system

performance. The hash search algorithm proved to be

the most superior in terms of search speed and

performance stability of the system, although it

requires more memory. Meanwhile, binary search

offers a good balance between speed and memory

efficiency, provided that the data is sorted. On the

other hand, linear search is an easy and low-memory

option, but it is not efficient for large datasets.

Each algorithm has its own advantages and

disadvantages. Therefore, the selection of the most

appropriate search algorithm needs to be adjusted to

the system needs, dataset size, data structure, and

resources. This research provides a comparative

overview that can be used as a guideline in designing

an efficient product search system that is appropriate

for the context in which it is used.

REFERENCE

 [1] H. Brenner, A. Trotman, and D. Hawking, “A

product search task and dataset from eBay

Search,” in Proc. of the 40th Int. ACM SIGIR

Conf. on Research and Development in

Information Retrieval, 2017, pp. 143–152.

[Online]. Available: https://ceur-ws.org/Vol-

2311/paper_14.pdf.

[2] M. Abdulhayoglu and B. Thijs, “Scalable

bibliographic matching using locality sensitive

hashing,” Scientometrics, vol. 112, no. 3, pp.

1321–1335, Mar. 2017. [Online]. Available:

https://doi.org/10.1007/s11192-016-2210-0

[3] A. M. Rabiu, A. B. Garko, and A. M. Abdullahi,

“Effects of multi-core processors on linear and

binary search algorithms,” Dutse J. of Pure and

Applied Sciences, vol. 4, no. 2, pp. 375–381,

2018. [Online]. Available:

https://doi.org/10.5281/zenodo.4472105

[4] M. Ali, “Performance analysis of search

algorithms on workstation system,” Lahore

Garrison Univ. Res. J. of Computer Science and

Information Technology, vol. 4, no. 2, pp. 95–

104, 2020. [Online]. Available:

https://doi.org/10.54692/lgurjcsit.2020.0402136

[5] D. Liu and S. Xu, “Comparison of hash table

performance with open addressing and closed

addressing: An empirical study,” Int. J.

Networked Distrib. Comput., vol. 3, no. 1, pp.

https://ceur-ws.org/Vol-2311/paper_14.pdf
https://ceur-ws.org/Vol-2311/paper_14.pdf
https://doi.org/10.1007/s11192-016-2210-0
https://doi.org/10.1007/s11192-016-2210-0
https://doi.org/10.5281/zenodo.4472105
https://doi.org/10.5281/zenodo.4472105
https://doi.org/10.54692/lgurjcsit.2020.0402136
https://doi.org/10.54692/lgurjcsit.2020.0402136

60–68, 2015. [Online]. Available:

https://doi.org/10.2991/ijndc.2015.3.1.7

[6] J. Wang, T. Zhang, J. Song, and N. Sebe, “A

survey on learning to hash,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 40, no. 4, pp.

769–790, Apr. 2018. [Online]. Available:

https://doi.org/10.1109/TPAMI.2017.2701384

[7] W. B. Samson, “Hash table collision handling on

storage devices with latency,” Comput. J., vol.

24, no. 2, pp. 130–131, 1981. [Online].

Available:

https://doi.org/10.1093/comjnl/24.2.130

[8] R. Santosa and N. Dewi, “Product search is one

of the important features for users when

interacting with an e-commerce website,”

Neptunus: J. Inform. dan Teknologi, vol. 3, no.

1, pp. 33–40, 2023. [Online]. Available:

https://doi.org/10.61132/neptunus.v3i1.698

[9] A. A. D. R. Kulandai, “Performance of linear and

spiral hashing algorithms,” Algorithms, vol. 17,

no. 9, Art. no. 401, 2024. [Online]. Available:

https://doi.org/10.3390/a17090401

[10] J. Wu, L. Shen, and L. Liu, “LSH-based

distributed similarity indexing with load

balancing in high-dimensional space,” Journal

of Supercomputing, vol. 76, pp. 636–665, Oct.

2020. [Online]. Available:

https://doi.org/10.1007/s11227-019-03047-6

[11] S. Das and D. Khilar, "New and improved search

algorithms and precise analysis of their

performance," Future Generation Computer

Systems, vol. 86, pp. 1188–1204, Sept. 2018.

[Online]. Available:

https://www.sciencedirect.com/science/article/p

ii/S0167739X18319307

https://doi.org/10.2991/ijndc.2015.3.1.7
https://doi.org/10.2991/ijndc.2015.3.1.7
https://doi.org/10.1109/TPAMI.2017.2701384
https://doi.org/10.1109/TPAMI.2017.2701384
https://doi.org/10.1093/comjnl/24.2.130
https://doi.org/10.1093/comjnl/24.2.130
https://doi.org/10.61132/neptunus.v3i1.698
https://doi.org/10.61132/neptunus.v3i1.698
https://doi.org/10.3390/a17090401
https://doi.org/10.3390/a17090401
https://doi.org/10.1007/s11227-019-03047-6
https://www.sciencedirect.com/science/article/pii/S0167739X18319307
https://www.sciencedirect.com/science/article/pii/S0167739X18319307

