Performance Analysis of Queue Structure in
CPU Scheduling Simulation: First-Come-
First- Serve Case Study in Python

Qolbun Halim Hidayatulloh!), Dammar Sanggalie!?), Putu Novita Darmadewil®), Wafiq Ulil Abshor!*,
Aziz Suroni®,
State University of Surabaya, Indonesia
(24111814065, 24111814051, 2411814007, 2411814064} @mbhs.unesa.ac.id [1][2][3][4],
azissuroni@unesa.ac.id[5]

Abstract— Queue data structure is an important
component in CPU scheduling, especially in the First-
Come-First-Serve (FCFS) algorithm that executes
processes in the order of arrival. This study aims to
analyze the performance of queue structures (deque vs.
list) in FCFS CPU scheduling simulations using
Python. The simulations are designed to evaluate
metrics such as waiting time, completion time, CPU
utilization, and throughput, and to identify the convoy
effect. The results show that deque (O(1) for
append/popleft operations) is 6.22 times faster than list
(O(n) for pop(0)) in a 1000-iteration test with a dataset
of 10 processes. The convoy effect causes high waiting
times for some processes, indicating the limitations of
FCFS. This implementation uses a modular object-
oriented programming (OOP) approach, providing a
basis for further analysis of scheduling algorithms.
This study emphasizes the importance of choosing the
right data structure for operating system efficiency.

Keywords— CPU Scheduling, FCFS, Python, Queue,
Data Structure.

I.INTRODUCTION

In the modern computing world, efficient process
management is a crucial aspect of an operating system.
One of the core components in managing such
processes is CPU scheduling, a method for
determining the order of execution of processes that
are waiting for their turn to be executed by the
processor. To represent the queue of these processes,
the queue data structure becomes very relevant and
effective. Queues work on the First-

In First Out(FIFO), which is also the basis of the
First-Come-First-Serve (FCFS) scheduling
algorithm[1].

FCFS is the simplest scheduling algorithm among
other algorithms such as Shortest Job First or Round
Robin. However, FCFS still has an important value as
a basis for understanding the concept of scheduling and

the application of queue data structures in computer
systems. Through the FCFS algorithm simulation
using Python, students or novice researchers can
understand how processes are executed sequentially
according to their arrival time and how queue
structures play an important role in the mechanism.

The purpose of writing this article is to analyze the
performance of queue structures in the application of
the First-Come-First-Serve algorithm in CPU
scheduling simulations[2]. This study also aims to
provide an overview of the implementation of the
algorithm in a simple but applicable way using Python
as a simulation tool.

II. LITERATURE REVIEW

A. Queue Data Structure

Queueor queue is one of the linear data structures
that stores elements sequentially with the First-In-
First-Out (FIFO) principle. This means that the first
element that comes in will be the first element to come
out[3]. In its implementation, queues are often used in
various applications that involve sequential data
processing, such as queue management on printers,
computer networks, and operating systems[4]. Basic
operations on queues include:
1) Enqueue: adds an element to the back of the queue
2) Dequeue: removes an element from the front of the

queue
3) Peek/Front: see the elements in the front without

deleting
4) IsEmpty: check if the queue is empty

Queuecan be implemented using arrays or linked
lists, depending on needs and space efficiency.
B. CPU Scheduling Algorithm

CPU scheduling is a mechanism in an operating
system to determine which processes will be executed
by the CPU, especially when many processes are in a
ready state. One of the simplest algorithms used is
First-Come-First-Serve (FCFS)[5]

mailto:24111814071%7d@mhs.unesa.ac.id

C. First-Come-First-Serve (FCFS)

FCFS works by executing processes in the order
they arrive. The process that arrives first will be
executed first, without considering execution time or
priority[6]. Because it follows the FIFO principle, this
algorithm is naturally suited to being implemented
using a queue data structure.

The advantage of FCFS is that it is easy to
implement and understood[6]. However, this algorithm
has weaknesses, such as the possibility of a “convoy
effect”, namely a process with a large burst time can
cause small processes that come after it to have to wait
a long time[7].

III. IMPLEMENTATION AND ANALYSIS
A. Simulation Design
1) Purpose of Simulation
This simulation aims to represent and analyze the
performance of the CPU Scheduling First-Come-First-
Serve (FCFS) algorithm with a focus on evaluating the
performance of the queue data structure. The
simulation system is designed to provide a
comprehensive analysis of the FCFS algorithm
implementation in the Python environment,
Comparison of the performance of queue data
structures (deque vs list) [8], Analysis of scheduling
metrics including waiting time, turnaround time, and
throughput, Evaluation of CPU usage efficiency and
convoy effect characteristics.
2) System Components
Each process in the simulation has the following
attributes:
a. Process ID (PID): Unique identification for each
process
b. Arrival Time: Time of arrival of the process to
the system
c. Burst Time: The execution time required for the
process
d. Waiting Time: Waiting time for a process in the
queue (calculated automatically)
e. Turnaround Time: Total process time in the
system (arrival to completion)
f. Start Time: Start time of process execution
g. Completion Time: Process execution completion
time
3) Analysis Output
The system generates various analytical metrics
including:
Detailed execution table per process
Average waiting time and turnaround time
CPU utilization and system throughput
Variance analysis and waiting time distribution
Queue operation performance benchmark
f. Visualization of execution timeline (Gantt chart)
B. Data Structures and Approaches
1) Programming Paradigms
Implementation uses Object-Oriented
Programming (OOP) approach with modular design to

o oo o

facilitate extensibility and maintainability. The system
structure consists of:
a. Process Class: Representation of a process entity
with attribute encapsulation
b. FCFSScheduler class: Core scheduler with
simulation and analysis methods
c. Utility Methods: Helper functions for metric
calculations and visualizations
2) Queue Data Structure
This study performs a performance comparison
between two queue implementations:
a. Deque (collections.deque):

i. Time complexity: O(1) for append and
popleft operations[6] Internal
implementation: Doubly-linked list

ii. Memory efficient for FIFO operations

b. List (Python built-in):

i. Time complexity: O(n) for pop(0) operation

ii. Internal implementation: Dynamic array

iii. Requires shifting of elements when deleting
at head[8].

3) Benchmark Methodology
Performance evaluation is carried out through:
a. Multiple iterations testing (1000 iterations)
b. Time measurement using time.perf counter()
c. Statistical analysis to validate the consistency of
results
C. Program Code Implementation
1) Class Process Definition

class Process:
"""Class to represent processes
in the system"""
def init (self, pid: str,
arrival time: int, burst time:
int) :
self.pid = pid
self.arrival time =
arrival time
~self.burst time =
burst time
self.waiting time = 0
self.turnaround time = 0
self.completion time
self.start time = 0

2) Core FCFS Scheduler Implementation

class FCFSScheduler:
“First-Come-First-Serve CPU
Scheduler with performance
analysis” ef init (self):
self.processes:
List[Process] = []
self.queue = deque ()
self.execution log = []
self.performance metrics = {}

Il
o

def simulate (self, verbose: bool

= True) -> Dict:

"Running FCFS scheduling
simulation"
self.reset ()

benchmark"""
Test deque operations
start time =

time module.perf counter ()

Sort processes by arrival time
sorted processes =
sorted(self.processes, key=lambda

p: p.arrival time)

Put in queue
for process in

sorted processes:

self.queue.append (proce
ss)
current time = 0

" total idle time = 0

while self.queue:

process =
self.queue.popleft ()

Handle CPU idle time

for in range(iterations):
test queue = deque()
for process in
self.processes:
test queue.append(process
s)
while test queue:
test queue.popleft ()
deque time =
time module.perf counter() -
start time
Similar implementation for list
comparison

if current time <
process.arrival time:
idle duration =
process.arrival time - current time
total idle time +=

Return benchmark results

self.performance metrics
3) Performance Analysis Methods
def
_calculate performance metrics(self
, total idle time: int, total time:
int) :
"""Calculating various
performance metrics"""
n = len(self.processes)
total waiting =
sum(p.waiting time for p in
self.processes)
total turnaround =
sum (p.turnaround time for p in

idle duration
current time =
process. arrival time

Metric calculations
time
process.start time =
current time
B process.waiting time =
current time - process.arrival time
process.completion time
= current time + process. burst time
B process.turnaround:time
= process.waiting time +
process.burst time

D. Simulation Results and Analysis
1) Test Dataset
The simulation uses the following process dataset:

processes_data =[
['P1', 0, 5], # PID, Arrival Time, Burst Time

current time += process.
burst time

['P2', 1, 3],
self. calculate performance t ['P3', 2, 8],
ricks (total idle time, current time) ['P4', 3, 6],

return. [9]]

2) Simulation Execution Output
self.processes)self.performance metri

cs = {

'avg waiting time':total wa
iting / n,

FCFS CPU SCHEDULING SIMULATION

'avg_turnaround time':total

turnaround / n, PID Arrival Burst Start Finish Wait
'cpu utilization': ((total time - TA

total idle time) / total time) * P1 0 5 0 5 0

100, P2 1 3 5 8 4
"throughput': n / total time, P3 2 I I 16 6
'total idle time': total idle time, P4 3 6 16 22 13

'waiting time variance':
self. calculate variance([p.waiting tim
e for p in self.processes])

}

def benchmark performance (self,
iterations: int = 1000) -> Dict:
"""Queue operations performance

3)

4)

Gantt Chart - FCFS Scheduling

N

Processes

T T T
10 15 20
Time

(=}
w

Figure 1. 1 Gantt chart illustrating the execution sequence
of processes in the FCFS scheduling simulation. Process P4
experienced the longest waiting time due to the convoy effect
caused by process P3.

Figure 1.1 shows the Gantt chart generated from the
FCES simulation. Each bar represents the execution
time of a process. The chart clearly illustrates the
sequential order of execution and highlights the convoy
effect, particularly affecting process P4, which had to
wait 13 units despite having a shorter burst time than P3.
This visualization enhances understanding of FCFS
behavior under varying burst time conditions.

Performance Metrics Analysis

SYSTEM PERFORMANCE ANALYSIS

Average Waiting Time : 5.75 units

Turnaround Time : 11.25 units

CPU Utilization units : 100.00%

Throughput : 0.1818 processes/unit
time

Total Idle Time . 0 units

Max Waiting Time 13 units

Minimum Waiting Time : O units

Variance . 23.69

Queue Performance Benchmark
QUEUE PERFORMANCE BENCHMARK (1000
iterations)

Deque operations: 0.000234
seconds List operations: 0.001456
seconds Speedup deque :
6.22x faster

E. Discussion and Interpretation of Results

FCFS Algorithm

Analysis Execution Characteristics:

a. Process P1: Executed immediately without delay
(arrival time = start time),

b. Process P2: Experiences a waiting time of 4 units
because it has to wait for P1 to finish,

c. Process P3: Waiting time 6 units, indicating
accumulated delay,

d. Process P4: Highest waiting time (13 units) due
to convoy effect

Convoy Effect Analysis: The convoy effect
phenomenon is clearly visible in the P4 process which
has a burst time of 6 units but must wait for 13 units.
This occurs because P3 with a burst time of 8 units
executes first, causing subsequent processes to
experience significant delays.

2) System Metrics Evaluation

CPU Utilization (100%): The system achieves
optimal CPU utilization as there is no time gap between
process executions. This indicates efficient use of CPU
resources in a continuous arrival scenario.

Average Waiting Time (5.75 units): This value is
relatively high compared to optimal scheduling
algorithms such as Shortest Job First (SJF). The large
variation in waiting time (variance = 23.69) indicates
uneven service between processes.

Throughput (0.1818 processes/units): The system
throughput indicates the ability to complete about 0.18
processes per units time, which is a direct result of the
total execution time and the number of processes.

3) Data Structure Performance Analysis

Deque Advantage: Benchmark results show that
deque has 6.22x faster performance than list for queue
operations. This is because:

a. Complexity Advantage: popleft() on a deque is

O(1), while pop(0) on a list is O(n)

b. Memory Efficiency: Deque does not require

shifting elements like lists

c. Scalability: Difference performance will the

more significant on larger datasets.

d. Implications Practical: For implementation

scheduling algorithm in real operating system,
data structure selection the right one can have a
significant impact on overall system
performance.

4) Limitations and Weaknesses of FCFS

Convoy Effect: The FCFS algorithm is susceptible
to the convoy effect where a process with a large burst
time can cause significant delays to subsequent
processes.

Non-Preemptive Nature: The non-preemptive
nature of FCFS causes the system to be unable to
optimize response time for processes with high priority
or short burst times[11].

Average Case Performance: The average
performance of FCFS is not optimal compared to more
sophisticated scheduling algorithms such as Shortest
Remaining Time First (SRTF) or Multilevel Feedback
Queue.

5) Validation and Verification

Result Consistency: All manual calculations have
been verified with system output:

a. Waiting Time P2: (5-1)=4

b. Turnaround Time P3: (6+8) = 14

c. Average calculations: Confirmed

Benchmark Reliability: Testing with 1000 iterations
provides consistent results and reliable statistics for
comparing data structure performance.

4

F. Implementation Conclusion
The FCFS scheduler implementation in Python has
successfully demonstrated:
1. Functional Correctness
The algorithm runs according
specifications with accurate results.
2. Performance Analysis
The system is capable of providing
comprehensive analysis of various scheduling
metrics.
3. Data Structure Optimization
Deque has proven superior for implementing queue

to FCFS

operations.
4. Scalable Architecture
Design OOP allow extension Forother

scheduling algorithms.

The results of this implementation provide a solid
foundation for further analysis of scheduling
algorithms and operating system performance
optimization[10].

IV. CONCLUSION

This article has reviewed the application of queue
data structure in the simulation of First-Come-First-
Serve (FCFS) CPU process scheduling algorithm using
Python programming language. Through object-
oriented programming (OOP) approach, the system
successfully simulates the process execution based on
arrival time with high accuracy and produces various
performance metrics such as waiting time, turnaround
time, and CPU utilization.

Simulation results show that queue data
structures—especially deques—are significantly more
efficient than lists in queuing operations, with a
speedup of more than six times based on 1000 iterations
of testing. This reinforces the importance of selecting
an appropriate data structure.

in the implementation of computing systems that
depend on process management.

From the algorithm side, FCFS offers simplicity and
determinism, but has major drawbacks in the form of
convoy effects and high waiting times in certain
scenarios. Even so, this algorithm remains relevant as a
basis for understanding the concept of scheduling and
can be a foundation for further study of more complex
algorithms.

As a development, the system can be extended to
accommodate preemptive algorithms such as Round
Robin or Shortest Remaining Time First (SRTF), as
well as integrate real-time visualization and multi-core
CPU models for more comprehensive analysis.

References

[1] A. M. Widodo et al, “Workshop Pengenalan
Aplikasi CPU OS Simulator untuk Penjadualan
First-Come First-Served (FCFS),” J. Iim. Inform.
Glob. Edu., vol. 7,no. 3, pp. 360-365, 2023

[2] O. Hajjar, E. Mekhallalati, N. Annwty, F.
Alghayadh, Keshta, and M. Algabri, “Performance
Assessment of CPU Scheduling Algorithms: A
Scenario-Based Approach with FCFS, RR, and
SJE,” J. Comput. Sci., vol. 20, no. 9, pp. 972-985,
Jun. 2024, doi: 10.3844/JCSSP.2024.972.985.

[3] A. Zulfahrizan, M. Alby, S. Hsb, F. Hutagalung, and
F. Ramadhani, “IMPLEMENTASI LIBRARY
PYTHON DEQUEUE PADA ANTRIAN BANK
MENGGUNAKAN LOGIKA FIRST IN FIRST
OUT,” J. Sist. Komput. dan Teknol. Inf-, vol. 9, no.
1, pp. 224-228, 2025.

[4] A. Wijoyo, A. R. Prasetiyo, A. A. Salsabila, K. Nife,
Murni, and P. B. Nadapdap, “Evaluasi Efisiensi
Struktur Data Linked List pada Implementasi
Sistem Antrian,” JRIIN J. Ris. Inform. dan Inov.,
vol. 1, no. 12, pp. 1244-1246, Jun. 2024. Accessed:
May 28, 2025. [Online]. Available:
https://jurnalmahasiswa.com/index.php/jriin/articl
e/view/1060

[5] A. Rizal and N. Hasibuan, “Implementasi
Penjadwalan CPU Menggunakan Algoritma First
Come First Served (FCFS),” InfolekJar (Jurnal
Nas. Inform. dan Teknol. Jaringan), vol. 7, no. 1,
pp- 1-4, Aug. 2024, doi:
10.30743/INFOTEKJAR.V711.9638.

[6] Y.-K. Che and O. Tercieux, “Optimal Queue
Design,” SSRN Electron. J., pp. 1-89, 2021, doi:
10.2139/ssrn.3743663.

[7] “collections — Container datatypes — Python
3.13.3 documentation.” Accessed: May 28, 2025.
[Online]. Available:
https://docs.python.org/3/library/collections.html#
collections.deque

[8] “Benchmarking deque against other data structures
- Python Deque: Efficient Double-Ended Queue
Operations | StudyRaid.” Accessed: Jun. 18, 2025.
[Online]. Available:
https://app.studyraid.com/en/read/15353/533020/
benchmarking-deque-against-other-data-structures

[9] L. Juni et al., “Implementasi Algoritma Fifo
Terhadap Sistem Antrian Pasien di Rumah Sakit
Berbasis Web Online,” J. Electr. Syst. Control
Eng., vol. 7, no. 2, pp. 79-85, Feb. 2024, doi:
10.31289/jesce.v7i2.10665.

[10] D. Patel and R. Patel, “Performance Analysis and
Comparison of FCFS, SJF, and Round Robin
Scheduling Algorithms,” Int. J. Comput. Appl.,
vol. 183, no. 27, pp. 1-6, 2021, doi:
10.5120/ijca2021921667.

[11] “Implementation of Queue Data Structure in
Python | by Andreas Soularidis | Python in Plain
English.” Accessed: Jun. 18, 2025. [Online].
Available: https://python.plainenglish.io/queue-
data-strucure-theory-and-python-implementation-
e58f3582¢39

https://jurnalmahasiswa.com/index.php/jriin/article/view/1060
https://jurnalmahasiswa.com/index.php/jriin/article/view/1060
https://www.google.com/search?q=https://docs.python.org/3/library/collections.html%23collections.deque
https://www.google.com/search?q=https://docs.python.org/3/library/collections.html%23collections.deque
https://app.studyraid.com/en/read/15353/533020/benchmarking-deque-against-other-data-structures
https://app.studyraid.com/en/read/15353/533020/benchmarking-deque-against-other-data-structures
https://www.google.com/search?q=https://python.plainenglish.io/queue-data-strucure-theory-and-python-implementation-e58f3582c39
https://www.google.com/search?q=https://python.plainenglish.io/queue-data-strucure-theory-and-python-implementation-e58f3582c39
https://www.google.com/search?q=https://python.plainenglish.io/queue-data-strucure-theory-and-python-implementation-e58f3582c39

