
 

Performance Analysis of Queue Structure in 

CPU Scheduling Simulation: First-Come-

First- Serve Case Study in Python 
 

Qolbun Halim Hidayatulloh[1],  Dammar Sanggalie[2], Putu Novita Darmadewi[3], Wafiq Ulil Abshor[4], 

Aziz Suroni[5]. 

State University of Surabaya, Indonesia 

{24111814065, 24111814051, 2411814007, 2411814064}@mhs.unesa.ac.id [1][2][3][4], 

azissuroni@unesa.ac.id[5] 

 

Abstract— Queue data structure is an important 

component in CPU scheduling, especially in the First-

Come-First-Serve (FCFS) algorithm that executes 

processes in the order of arrival. This study aims to 

analyze the performance of queue structures (deque vs. 

list) in FCFS CPU scheduling simulations using 

Python. The simulations are designed to evaluate 

metrics such as waiting time, completion time, CPU 

utilization, and throughput, and to identify the convoy 

effect. The results show that deque (O(1) for 

append/popleft operations) is 6.22 times faster than list 

(O(n) for pop(0)) in a 1000-iteration test with a dataset 

of 10 processes. The convoy effect causes high waiting 

times for some processes, indicating the limitations of 

FCFS. This implementation uses a modular object-

oriented programming (OOP) approach, providing a 

basis for further analysis of scheduling algorithms. 

This study emphasizes the importance of choosing the 

right data structure for operating system efficiency.  

 

Keywords— CPU Scheduling, FCFS, Python, Queue, 

Data Structure. 

  

I. INTRODUCTION 

In the modern computing world, efficient process      

management is a crucial aspect of an operating system. 

One of the core components in managing such 

processes is CPU scheduling, a method for 

determining the order of execution of processes that 

are waiting for their turn to be executed by the 

processor. To represent the queue of these processes, 

the queue data structure becomes very relevant and 

effective. Queues work on the First- 

In First Out(FIFO), which is also the basis of the 

First-Come-First-Serve (FCFS) scheduling 

algorithm[1]. 

FCFS is the simplest scheduling algorithm among 

other algorithms such as Shortest Job First or Round 

Robin. However, FCFS still has an important value as 

a basis for understanding the concept of scheduling and 

the application of queue data structures in computer 

systems. Through the FCFS algorithm simulation 

using Python, students or novice researchers can 

understand how processes are executed sequentially 

according to their arrival time and how queue 

structures play an important role in the mechanism. 

The purpose of writing this article is to analyze the 

performance of queue structures in the application of 

the First-Come-First-Serve algorithm in CPU 

scheduling simulations[2]. This study also aims to 

provide an overview of the implementation of the 

algorithm in a simple but applicable way using Python 

as a simulation tool.  

  

II. LITERATURE REVIEW 

A. Queue Data Structure  

Queueor queue is one of the linear data structures 

that stores elements sequentially with the First-In-

First-Out (FIFO) principle. This means that the first 

element that comes in will be the first element to come 

out[3]. In its implementation, queues are often used in 

various applications that involve sequential data 

processing, such as queue management on printers, 

computer networks, and operating systems[4]. Basic 

operations on queues include: 

1) Enqueue: adds an element to the back of the queue 

2) Dequeue: removes an element from the front of the 

queue 

3) Peek/Front: see the elements in the front without 

deleting 

4) IsEmpty: check if the queue is empty 

Queuecan be implemented using arrays or linked 

lists, depending on needs and space efficiency.  

B. CPU Scheduling Algorithm  

CPU scheduling is a mechanism in an operating 

system to determine which processes will be executed 

by the CPU, especially when many processes are in a 

ready state. One of the simplest algorithms used is 

First-Come-First-Serve (FCFS)[5]  

mailto:24111814071%7d@mhs.unesa.ac.id


2   

C. First-Come-First-Serve (FCFS) 

FCFS works by executing processes in the order 

they arrive. The process that arrives first will be 

executed first, without considering execution time or 

priority[6]. Because it follows the FIFO principle, this 

algorithm is naturally suited to being implemented 

using a queue data structure. 

The advantage of FCFS is that it is easy to 

implement and understood[6]. However, this algorithm 

has weaknesses, such as the possibility of a “convoy 

effect”, namely a process with a large burst time can 

cause small processes that come after it to have to wait 

a long time[7]. 

 

III.  IMPLEMENTATION AND ANALYSIS 

A. Simulation Design 

1) Purpose of Simulation 

This simulation aims to represent and analyze the 

performance of the CPU Scheduling First-Come-First-

Serve (FCFS) algorithm with a focus on evaluating the 

performance of the queue data structure. The 

simulation system is designed to provide a 

comprehensive analysis of the FCFS algorithm 

implementation in the Python environment, 

Comparison of the performance of queue data 

structures (deque vs list) [8], Analysis of scheduling 

metrics including waiting time, turnaround time, and 

throughput, Evaluation of CPU usage efficiency and 

convoy effect characteristics. 

2) System Components 

Each process in the simulation has the following 

attributes: 

a. Process ID (PID): Unique identification for each 

process 

b. Arrival Time: Time of arrival of the process to 

the system 

c. Burst Time: The execution time required for the 

process 

d. Waiting Time: Waiting time for a process in the 

queue (calculated automatically) 

e. Turnaround Time: Total process time in the 

system (arrival to completion) 

f. Start Time: Start time of process execution 

g. Completion Time: Process execution completion 

time 

3) Analysis Output 

The system generates various analytical metrics 

including: 

a. Detailed execution table per process 

b. Average waiting time and turnaround time 

c. CPU utilization and system throughput 

d. Variance analysis and waiting time distribution 

e. Queue operation performance benchmark 

f. Visualization of execution timeline (Gantt chart)  

B. Data Structures and Approaches  

1) Programming Paradigms 

Implementation uses Object-Oriented 

Programming (OOP) approach with modular design to 

facilitate extensibility and maintainability. The system 

structure consists of: 

a. Process Class: Representation of a process entity 

with attribute encapsulation 

b. FCFSScheduler class: Core scheduler with 

simulation and analysis methods 

c. Utility Methods: Helper functions for metric 

calculations and visualizations 

2) Queue Data Structure 

This study performs a performance comparison 

between two queue implementations: 

a. Deque (collections.deque): 

i. Time complexity: O(1) for append and 

popleft operations[6] Internal 

implementation: Doubly-linked list 

ii. Memory efficient for FIFO operations 

b. List (Python built-in): 

i. Time complexity: O(n) for pop(0) operation 

ii. Internal implementation: Dynamic array 

iii. Requires shifting of elements when deleting 

at head[8]. 

3) Benchmark Methodology 

Performance evaluation is carried out through: 

a. Multiple iterations testing (1000 iterations) 

b. Time measurement using time.perf_counter() 

c. Statistical analysis to validate the consistency of 

results 

C. Program Code Implementation   

1) Class Process Definition 

class Process: 

"""Class to represent processes 

in the system""" 

def init (self, pid: str, 

arrival_time: int, burst_time: 

int): 

self.pid = pid 

self.arrival_time = 

arrival_time 

self.burst_time = 

burst_time 

self.waiting_time = 0 

self.turnaround_time = 0 

self.completion_time = 0 

self.start_time = 0 

2) Core FCFS Scheduler Implementation 

class FCFSScheduler: 

“First-Come-First-Serve CPU 

Scheduler with performance 

analysis” ef init(self): 

self.processes: 

List[Process] = [] 

self.queue = deque() 

self.execution_log = [] 

self.performance_metrics = {} 

 

def simulate(self, verbose: bool 

= True) -> Dict: 

 

"Running FCFS scheduling 

simulation" 

self.reset() 



3   

# Sort processes by arrival time 

sorted_processes = 

sorted(self.processes, key=lambda 

p: p.arrival_time) 

# Put in queue 

for process in 

sorted_processes: 

self.queue.append(proce 

ss) 

current_time = 0 

total_idle_time = 0 

while self.queue: 

process = 

self.queue.popleft() 

# Handle CPU idle time 

if current_time < 

process.arrival_time: 

idle_duration = 

process.arrival_time - current_time 

total_idle_time += 

idle_duration 

current_time = 

process. arrival_time 

 

# Metric calculations 

time 

process.start_time = 

current_time 

process.waiting_time = 

current_time - process.arrival_time 

process.completion_time 

= current_time + process. burst_time 

process.turnaround_time 

= process.waiting_time + 

process.burst_time 

 

current_time += process. 

burst_time 

self._calculate_performance_t

ricks(total_idle_time, current_time) 

return. [9] 

self.processes)self.performance_metri

cs = { 

'avg_waiting_time':total_wa

iting / n, 

'avg_turnaround_time':total_

turnaround / n, 

'cpu_utilization': ((total_time - 

total_idle_time) / total_time) * 

100, 

'throughput': n / total_time, 

'total_idle_time': total_idle_time, 

'waiting_time_variance': 

self._calculate_variance([p.waiting_tim

e for p in self.processes]) 

} 

 

def benchmark_performance(self, 

iterations: int = 1000) -> Dict: 

"""Queue operations performance 

benchmark""" 

# Test deque operations 

start_time = 

time_module.perf_counter() 

for _ in range(iterations): 

test_queue = deque() 

for process in 

self.processes: 

test_queue.append(process 

s) 

while test_queue: 

test_queue.popleft() 

deque_time = 

time_module.perf_counter() - 

start_time 

# Similar implementation for list 

comparison 

# Return benchmark results 

 

self.performance_metrics 

3) Performance Analysis Methods 
def 

_calculate_performance_metrics(self 

, total_idle_time: int, total_time: 

int): 

"""Calculating various 

performance metrics""" 

n = len(self.processes) 

total_waiting = 

sum(p.waiting_time for p in 

self.processes) 

total_turnaround = 

sum(p.turnaround_time for p in 

 

D.  Simulation Results and Analysis   

1) Test Dataset 
The simulation uses the following process dataset: 

processes_data = [ 

['P1', 0, 5], # PID, Arrival Time, Burst Time  

['P2', 1, 3], 

['P3', 2, 8], 

['P4', 3, 6], 

] 

2) Simulation Execution Output 

 
======================================== 

FCFS CPU SCHEDULING SIMULATION 

======================================== 

PID Arrival Burst Start Finish Wait 

TA 

P1  0  5  0  5  0  5 

 

 

 

 

P2 1 3 5 8 4 7 

P3 2 8 8 16 6 14 
P4 3 6 16 22 13 19 

 



4   

 

Figure 1. 1 Gantt chart illustrating the execution sequence 

of processes in the FCFS scheduling simulation. Process P4 

experienced the longest waiting time due to the convoy effect 

caused by process P3. 

Figure 1.1 shows the Gantt chart generated from the 

FCFS simulation. Each bar represents the execution 

time of a process. The chart clearly illustrates the 

sequential order of execution and highlights the convoy 

effect, particularly affecting process P4, which had to 

wait 13 units despite having a shorter burst time than P3. 

This visualization enhances understanding of FCFS 

behavior under varying burst time conditions. 

3) Performance Metrics Analysis 
===================================== 

SYSTEM PERFORMANCE ANALYSIS 

===================================== 

Average Waiting Time : 5.75 units 

Turnaround Time : 11.25 units 

CPU Utilization units : 100.00% 
Throughput            : 0.1818 processes/unit 

time 

Total Idle Time           : 0 units 

Max Waiting Time : 13 units 

Minimum Waiting Time : 0 units  

Variance : 23.69 

4) Queue Performance Benchmark 
QUEUE PERFORMANCE BENCHMARK (1000 

iterations) 

-------------------------------------------------- 

Deque operations: 0.000234 

seconds List operations: 0.001456 

seconds Speedup  deque : 

6.22x faster 

E.  Discussion and Interpretation of Results 

1) FCFS Algorithm  

Analysis Execution Characteristics: 

a. Process P1: Executed immediately without delay 

(arrival time = start time), 

b. Process P2: Experiences a waiting time of 4 units 

because it has to wait for P1 to finish, 

c. Process P3: Waiting time 6 units, indicating 

accumulated delay, 

d. Process P4: Highest waiting time (13 units) due 

to convoy effect 

Convoy Effect Analysis: The convoy effect 

phenomenon is clearly visible in the P4 process which 

has a burst time of 6 units but must wait for 13 units. 

This occurs because P3 with a burst time of 8 units 

executes first, causing subsequent processes to 

experience significant delays. 

2) System Metrics Evaluation 

CPU Utilization (100%): The system achieves 

optimal CPU utilization as there is no time gap between 

process executions. This indicates efficient use of CPU 

resources in a continuous arrival scenario. 

Average Waiting Time (5.75 units): This value is 

relatively high compared to optimal scheduling 

algorithms such as Shortest Job First (SJF). The large 

variation in waiting time (variance = 23.69) indicates 

uneven service between processes. 

Throughput (0.1818 processes/units): The system 

throughput indicates the ability to complete about 0.18 

processes per units time, which is a direct result of the 

total execution time and the number of processes. 

3) Data Structure Performance Analysis 

Deque Advantage: Benchmark results show that 

deque has 6.22x faster performance than list for queue 

operations. This is because: 

a. Complexity Advantage: popleft() on a deque is 

O(1), while pop(0) on a list is O(n) 

b. Memory Efficiency: Deque does not require 

shifting elements like lists 

c. Scalability: Difference performance will the 

more significant on larger datasets. 

d. Implications Practical: For implementation 

scheduling algorithm in real operating system, 

data structure selection the right one can have a 

significant impact on overall system 

performance. 

4) Limitations and Weaknesses of FCFS 

Convoy Effect: The FCFS algorithm is susceptible 

to the convoy effect where a process with a large burst 

time can cause significant delays to subsequent 

processes. 

Non-Preemptive Nature: The non-preemptive 

nature of FCFS causes the system to be unable to 

optimize response time for processes with high priority 

or short burst times[11]. 

Average Case Performance: The average 

performance of FCFS is not optimal compared to more 

sophisticated scheduling algorithms such as Shortest 

Remaining Time First (SRTF) or Multilevel Feedback 

Queue. 

5) Validation and Verification 

Result Consistency: All manual calculations have 

been verified with system output: 

a. Waiting Time P2: (5-1) = 4 

b. Turnaround Time P3: (6+8) = 14 

c. Average calculations: Confirmed 

Benchmark Reliability: Testing with 1000 iterations 

provides consistent results and reliable statistics for 

comparing data structure performance. 



5   

F.  Implementation Conclusion 

The FCFS scheduler implementation in Python has 

successfully demonstrated: 

1. Functional Correctness 

 The algorithm runs according to FCFS 

specifications with accurate results. 

2. Performance Analysis 

 The system is capable of providing 

comprehensive analysis of various scheduling 

metrics. 

3. Data Structure Optimization 

Deque has proven superior for implementing queue 

operations. 

4. Scalable Architecture 

 Design OOP allow extension Forother 

scheduling algorithms. 

The results of this implementation provide a solid 

foundation for further analysis of scheduling 

algorithms and operating system performance 

optimization[10]. 

 

IV. CONCLUSION 

This article has reviewed the application of queue 

data structure in the simulation of First-Come-First-

Serve (FCFS) CPU process scheduling algorithm using 

Python programming language. Through object-

oriented programming (OOP) approach, the system 

successfully simulates the process execution based on 

arrival time with high accuracy and produces various 

performance metrics such as waiting time, turnaround 

time, and CPU utilization. 

Simulation results show that queue data 

structures—especially deques—are significantly more 

efficient than lists in queuing operations, with a 

speedup of more than six times based on 1000 iterations 

of testing. This reinforces the importance of selecting 

an appropriate data structure. 

in the implementation of computing systems that 

depend on process management. 

From the algorithm side, FCFS offers simplicity and 

determinism, but has major drawbacks in the form of 

convoy effects and high waiting times in certain 

scenarios. Even so, this algorithm remains relevant as a 

basis for understanding the concept of scheduling and 

can be a foundation for further study of more complex 

algorithms. 

As a development, the system can be extended to 

accommodate preemptive algorithms such as Round 

Robin or Shortest Remaining Time First (SRTF), as 

well as integrate real-time visualization and multi-core 

CPU models for more comprehensive analysis.  

 

References  

[1] A. M. Widodo et al., “Workshop Pengenalan 

Aplikasi CPU OS Simulator untuk Penjadualan 

First-Come First-Served (FCFS),” J. Ilm. Inform. 

Glob. Edu., vol. 7, no. 3, pp. 360–365, 2023 

[2] O. Hajjar, E. Mekhallalati, N. Annwty, F. 

Alghayadh, Keshta, and M. Algabri, “Performance 

Assessment of CPU Scheduling Algorithms: A 

Scenario-Based Approach with FCFS, RR, and 

SJF,” J. Comput. Sci., vol. 20, no. 9, pp. 972–985, 

Jun. 2024, doi: 10.3844/JCSSP.2024.972.985. 

[3] A. Zulfahrizan, M. Alby, S. Hsb, F. Hutagalung, and 

F. Ramadhani, “IMPLEMENTASI LIBRARY 

PYTHON DEQUEUE PADA ANTRIAN BANK 

MENGGUNAKAN LOGIKA FIRST IN FIRST 

OUT,” J. Sist. Komput. dan Teknol. Inf., vol. 9, no. 

1, pp. 224–228, 2025.  

[4] A. Wijoyo, A. R. Prasetiyo, A. A. Salsabila, K. Nife, 

Murni, and P. B. Nadapdap, “Evaluasi Efisiensi 

Struktur Data Linked List pada Implementasi 

Sistem Antrian,” JRIIN J. Ris. Inform. dan Inov., 

vol. 1, no. 12, pp. 1244–1246, Jun. 2024. Accessed: 

May 28, 2025. [Online]. Available: 

https://jurnalmahasiswa.com/index.php/jriin/articl

e/view/1060 

[5] A. Rizal and N. Hasibuan, “Implementasi 

Penjadwalan CPU Menggunakan Algoritma First 

Come First Served (FCFS),” InfoTekJar (Jurnal 

Nas. Inform. dan Teknol. Jaringan), vol. 7, no. 1, 

pp. 1–4, Aug. 2024, doi: 

10.30743/INFOTEKJAR.V7I1.9638. 

[6] Y.-K. Che and O. Tercieux, “Optimal Queue 

Design,” SSRN Electron. J., pp. 1–89, 2021, doi: 

10.2139/ssrn.3743663. 

[7] “collections — Container datatypes — Python 

3.13.3 documentation.” Accessed: May 28, 2025. 

[Online]. Available: 

https://docs.python.org/3/library/collections.html#

collections.deque 

[8] “Benchmarking deque against other data structures 

- Python Deque: Efficient Double-Ended Queue 

Operations | StudyRaid.” Accessed: Jun. 18, 2025. 

[Online]. Available: 

https://app.studyraid.com/en/read/15353/533020/

benchmarking-deque-against-other-data-structures 

[9] I. Juni et al., “Implementasi Algoritma Fifo 

Terhadap Sistem Antrian Pasien di Rumah Sakit 

Berbasis Web Online,” J. Electr. Syst. Control 

Eng., vol. 7, no. 2, pp. 79–85, Feb. 2024, doi: 

10.31289/jesce.v7i2.10665. 

[10] D. Patel and R. Patel, “Performance Analysis and 

Comparison of FCFS, SJF, and Round Robin 

Scheduling Algorithms,” Int. J. Comput. Appl., 

vol. 183, no. 27, pp. 1–6, 2021, doi: 

10.5120/ijca2021921667.  

[11] “Implementation of Queue Data Structure in 

Python | by Andreas Soularidis | Python in Plain 

English.” Accessed: Jun. 18, 2025. [Online]. 

Available: https://python.plainenglish.io/queue-

data-strucure-theory-and-python-implementation-

e58f3582c39  

https://jurnalmahasiswa.com/index.php/jriin/article/view/1060
https://jurnalmahasiswa.com/index.php/jriin/article/view/1060
https://www.google.com/search?q=https://docs.python.org/3/library/collections.html%23collections.deque
https://www.google.com/search?q=https://docs.python.org/3/library/collections.html%23collections.deque
https://app.studyraid.com/en/read/15353/533020/benchmarking-deque-against-other-data-structures
https://app.studyraid.com/en/read/15353/533020/benchmarking-deque-against-other-data-structures
https://www.google.com/search?q=https://python.plainenglish.io/queue-data-strucure-theory-and-python-implementation-e58f3582c39
https://www.google.com/search?q=https://python.plainenglish.io/queue-data-strucure-theory-and-python-implementation-e58f3582c39
https://www.google.com/search?q=https://python.plainenglish.io/queue-data-strucure-theory-and-python-implementation-e58f3582c39

