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Introduction

Vegetable crops constitute a critical component of global food systems and human diets.
It serves as a primary source of essential vitamins, minerals, dietary fiber, and a diverse array
of phytonutrients and functional metabolites (Tripathy et al., 2021). Despite their nutritional
significance, many vegetable species face persistent challenges, including genetic erosion,
susceptibility to biotic and abiotic stresses, and post-harvest losses, which threaten yield
stability and nutritional security (El-Ramady, 2013; Solankey et al., 2021). Recent advances in
WGS have driven substantial innovation in our understanding of their genetic architecture,
enabling targeted improvement through food biotechnological approaches.

WGS has emerged as an innovative technology in vegetable agriculture, enabling the
comprehensive analysis of genetic variations that underpin traits such as yield, disease
resistance, and nutritional quality (Liu, 2024; Pandey et al., 2025). By sequencing the entire
DNA of a vegetable genome, including coding and non-coding regions, WGS facilitates
precision breeding, stress tolerance enhancement, and biodiversity conservation, addressing
global challenges like food security and climate change.

Historical Roots of Whole Genome Sequencing

The foundation of WGS relies on pivotal discoveries in molecular biology and
sequencing technologies. The discovery of DNA structure in 1953 by James Watson and
Francis Crick elucidated DNA’s double-helix structure, revealing how genetic information is
stored and replicated (Small, 2023). This provided the basis for understanding genomes as
sequences of nucleotide bases. In 1977, Frederick Sanger developed the chain-termination
method (Eren et al., 2022). This is the first practical DNA sequencing technique, which
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sequenced small DNA fragments with high accuracy, becoming the foundation for DNA
sequencing, enabling early insights into plant genetics. However, its limitations in speed, cost,
and scalability restricted its application to small genomic regions, making WGS of complex
vegetable genomes impractical. Sanger sequencing processes one DNA fragment at a time,
requiring manual handling and producing only a few hundred base pairs per reaction (Saini et
al., 2023).

The advent of next-generation sequencing (NGS) in the mid-2000s overcame these
barriers, revolutionizing genomics by enabling high-throughput, cost-effective sequencing of
entire genomes. NGS was introduced around 2005 with platforms like 454 and Illumina
enabling massively parallel sequencing, producing millions of short reads (50-300 bp)
simultaneously generating gigabases of data per run (A. Kumar et al., 2022). However, its short
reads struggled with repetitive and polyploid genomes. Therefore, Third-generation
sequencing (TGS) emerged around 2009, addressing these issues by producing long reads (10
kb to >2 Mb), improving the assembly of complex vegetable genomes (Oliveira et al., 2024).
TGS focuses on sequencing single DNA molecules in real-time, producing ultra-long reads
that span thousands to hundreds of thousands of base pairs, resolving structural variants, and
handling polyploid genomes common in vegetables. TGS encompasses two primary platforms,
which are Pacific Biosciences (PacBio) Single-Molecule Real-Time (SMRT) Sequencing and
Oxford Nanopore Technologies (ONT) Nanopore Sequencing.

Whole Genome Sequencing Methods

WGS methods encompass a diverse set of technologies designed to generate
comprehensive DNA sequence information across entire genomes. Over the past two decades,
these approaches have evolved from labor-intensive, low-throughput platforms to highly
automated systems capable of producing massive datasets with increasing accuracy and read
length. Understanding the principles, strengths, and limitations of various WGS methods is
crucial for selecting suitable strategies in vegetable genomics and food biotechnology research.
This subsection outlines the major sequencing platforms and workflows, highlighting how each
contributes to the quality of genome assembly, functional annotation, and downstream
biological interpretation.

De Novo WGS

De novo WGS is indispensable for the genomic characterization of unexplored or non-
model vegetable species lacking prior reference sequences. This approach entails the
fragmentation of genomic DNA, followed by high-throughput sequencing technologies to
generate long reads that span repetitive or structurally complex regions and subsequent de novo
assembly using algorithms such as de Bruijn graph-based or overlap-layout-consensus (OLC)
frameworks (De Luca et al., 2025).

Reference-Based WGS (Resequencing)

Reference-based WGS, also known as resequencing, involves sequencing the genome
of a target accession and aligning the resulting reads to a pre-existing reference genome to
identify genetic variants, such as single-nucleotide polymorphisms (SNPs), insertions,
deletions (indels), and structural rearrangements (Kumawat et al., 2022). This comparative
approach offers a rapid and cost-efficient alternative to de novo sequencing, as it leverages the
genomic framework of well-characterized model species.

Low-Pass WGS
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Low-pass WGS represents a cost-effective genotyping strategy that employs low
sequencing coverage ranging from 1x to 5x, typically across large populations (Sogbe et al.,
2025). The approach relies on statistical imputation algorithms to infer unobserved genotypes
based on linkage disequilibrium patterns and haplotypes derived from a high-quality reference
panel. Predominantly implemented using NGS platforms, low-pass WGS enables the efficient
capture of genome-wide variation at substantially reduced costs, making it particularly suitable
for genomic selection (GS) and association mapping in plant breeding programs.

Pangenome-Based WGS

Pangenome-based WGS represents an advanced genomic framework that captures the
full complement of genetic diversity within a species by sequencing multiple individuals or
accessions (Taylor et al., 2024). This approach distinguishes core genes that are conserved
across all accessions from dispensable or variable genes, which contribute to phenotypic
diversity and environmental adaptation. The construction of a pangenome typically integrates
de novo assemblies, frequently utilizing third-generation sequencing (TGS) technologies to
achieve high contiguity, with reference-based resequencing of broader populations using NGS
data. This hybrid strategy allows for comprehensive detection of structural variants, presence—
absence variations (PAVs), and novel genomic segments that are often absent in single-
reference genomes.

Whole Genome Sequencing (WGS) Prospect for Food Biotechnology

The declining cost and increasing accessibility of high-throughput sequencing
technologies have catalyzed an explosion in the number of sequenced vegetable genomes.
Table 1 provides a curated summary of representative vegetable crops that have been
sequenced. These foundational genomes are the bedrock upon which modern food
biotechnology is built. Whole-genome sequencing, particularly datasets derived from NGS and
TGS platforms, has enabled the systematic identification of candidate genes and informative
molecular markers, as cataloged in the table, which are being directly leveraged for precision
breeding. Thus, the prospect outlined by this growing list of sequenced genomes is one of
accelerated, knowledge-driven crop improvement, directly contributing to enhanced food
security and nutritional quality.

Table 1. WGS of Vegetable Crops and Their Impacts on Food Biotechnology
Scientific Sequencing Key Advantages

Name Method Findings References
Integration of (Takei et al.,
short and long 2021)
reads enabled

Solanum. NGS (Illumina . Domestication and

lycopersic resolution of

HiSeq 2000), understanding genome-

um . repetitive regions .
(tomato) TGS (PacBio) and scale breeding

domestication-

related loci

Improved Elucidgte polyploid (Hosaka et
Solanum assembl evolution, genome al., 2025)
tuberosu TGS (PacBio), t' i] d differentiation, and
m (potato) contiguity an implications for potato

variant detection breeding
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in a polyploid
genome
Enhanced the (Moreno-
. detection of Contreras et
S}f’f :;C’Zm NGS. TGS s.tructural variants Capsaicin content, al., 2024)
(pepper) ’ linked to ﬂavor bacterial wilt resistance
and disease
resistance traits
Cost-effective Yu et al,
Solanum SNP  discovery 2024)
melongen  NGS across diverse Genetic diversity and
a (resequencing) accessions for associated SNPs
(eggplant) population
analyses
TGS (Oxford Hybrid assemblies . (Seiko et al.,
Cucumis ~ Nanopore improved genome Cenome-wide g 2025)
sativus PromethlON2  accuracy  while ?r?zst?l::rl—t;?sliste d studies,
(cucumbe  4), . NGS  enabling selection, and genomic
n (Illumina population-scale predictioil models
HiSeq 2000 variant analysis '
Cucurbita Detection of (Montero-
pepo NGS (Illumina duplication Whole-genome Pau et al,
(pumpkin  HiSeq 2000)  signatures across duplication event 2018)
) the genome
) Accurate  short- (K. Yang et
Brassica read mapping al., 2018)
Siiracea NGS enabled reliable Distinct mitochondrial
. mitochondrial genome
capitata
(cabbage) genome
reconstruction
Very long reads (F. Yang et
Raphanus TGS (PacBio i:;(i)(l;;esd complex Identifies RsMIPS3 as a 2l 2023)
sati\fus ONT) ’ underlying kpy regulator of bolting
(radish) ) . time
flowering-time
regulation
Improved the (Cho et al.,
. assembly of a 2025)
Allium EOG\Zs(il(llumlna large, repetitive Molecular breeding,
cepa 6000) TGs &enome and evoluponary studl.es, and
(onion) (PacB’io) supported functional genomics
functional
annotation
Allium NGS (lllumina Efficient  variant Novel loci and candidate (Y. Wang et
sativum  NovaSeq detection  across al., 2025)
(garlic)  6000) accessions  for SO
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Name Method Findings References
candidate-gene
discovery
Long reads (Lee et al.,
. enabled , _ 2025)
Apium . . . Candidate resistance
. identification of .
graveolen TGS (PacBio) . genes and  genomic
resistance-related . . :
s (celery) . regions for introgression
regions across
complex scaffolds
Combined (Chu et al.,
i 2024)
sequencin
Lactuca regolved stgmctural Evolutionary
sativa NGS, TGS di it ) t relationships, potential
(lettuce) versity relevant — pslecular markers
to species
evolution
Telomere-to- (She et al.,
telomere 2025)
Spinacia TGS (PacBio, assemblies First complete T2T
oleracea captured repeat- _ .
. ONT) . . spinach genome
(spinach) rich regions and
structural
variation
Population-scale (Galewski &
sequencing o McGrath,
Beta . Historical gene flow, 2020)
. enabled inference )
vulgaris NGS f historical admixture, and
(beet) ot historical gene introgression
flow and
admixture
Rapid variant (Astaraki et
Phaseol discovery — . al., 2025)
vulaZi?Sus facilitated Xelf/?l;) rie:; ressie;iari‘z
gart NGS disease-resistance > OPIE .
(green . J cultivars, and controlling
bean) Screening and - jnsect vectors
breeding
decisions
Resequencing (P. Kumar et
Pisum across lines al., 2025)
sativin NGS (Re- supported Early-maturing pea lines
(common  sequencing) identification of y Ep
pea) alleles linked to
phenology
Dense variant (Chen et al.,
Zea mays datasets revealed Revealing evolutionary 2022)
subsp. NGS (Illumina evolutionary history, adaptive
Mays HiSeq 3000)  history and mechanisms, and
(corn) adaptive functional alleles
signatures
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Scientific Sequencing Key Advantages

Name Method Findings References
Asparagu Fine-scale variant (Ll et al.,
s mapping enabled 2014)
L . Early stage of sex
officinalis NGS exploration of .
chromosome evolution
(asparagu sex-chromosome
) evolution
. NGS (Illumina Integration of long Repetitive-rich genome, (X. Wang et
Sechium and short reads A al., 2025)
NovaSeq . o polyploidization event,
edule clarified repetitive . . .
6000), TGS significant gene family
(chayote) content and genome .
(ONT) . expansion
expansion
Conclusion

WGS has fundamentally transformed vegetable crop science, establishing a
foundational pillar for modern food biotechnology. As detailed in this review, the diverse array
of WGS methodologies provides a versatile toolkit for research and breeding objectives,
enabling the identification of genes and markers underlying agronomically important traits
such as disease resistance, stress tolerance, nutritional quality, and yield. Beyond serving as a
diagnostic resource, WGS now underpins predictive and precision breeding approaches.
Looking forward, integrating WGS with genomic selection, artificial intelligence-driven data
analytics, and genome editing technologies promises to accelerate the development of resilient,
high-yielding, and nutrient-rich vegetable cultivars. Such synergistic applications will be
pivotal in addressing global challenges, including food security, climate adaptation, and human
health.
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