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Abstract – Indoor positioning systems (IPS) are crucial where GPS accuracy is limited, but Wi-Fi 

RSSI-based methods face challenges from signal fluctuations and computational complexity. This 

research designed and implemented an Android application for indoor signal-strength positioning 

using a Multivariate Gaussian Mixture Model (MGMM) algorithm based on Wi-Fi RSSI 

fingerprinting. The system utilized three 2.4 GHz access points to collect Received Signal Strength 

Indicator (RSSI) data, building a fingerprint database. MGMM was integrated with Maximum 

Likelihood Estimation (MLE) for parameter estimation and Bayes' Theorem for probabilistic 

position determination. Testing was conducted in furnished and unfurnished rooms (30 trials per 

condition). Results showed 90% accuracy (within a 1-meter tolerance radius), a Mean Absolute Error 

(MAE) of 0.433 meters, and a Root Mean Square Error (RMSE) of 0.796 meters in furnished 

environments. In unfurnished rooms, the system achieved 100% accuracy (MAE and RMSE = 0 

meters). The average system latency was 62 ms, confirming real-time responsiveness. This study 

demonstrates MGMM’s effectiveness in modeling RSSI distributions and enhancing IPS accuracy.  
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I. INTRODUCTION 

Indoor Positioning Systems (IPS) have become indispensable 

in modern applications where Global Positioning System 

(GPS) accuracy is severely limited, such as hospitals, 

shopping malls, warehouses, and emergency response 

scenarios [1,2]. While GPS excels in open environments, its 

signals attenuate significantly indoors due to structural 

obstructions (e.g., walls, ceilings), leading to positioning 

errors exceeding 5–10 meters [3]. This limitation has spurred 

interest in alternative technologies, with Wi-Fi Received 

Signal Strength Indicator (RSSI)-based methods emerging as 

a cost-effective solution due to the ubiquity of existing Wi-

Fi infrastructure [4]. However, traditional RSSI-

fingerprinting approaches face critical challenges: signal 

fluctuations caused by multipath fading, interference from 

electronic devices, and environmental dynamics (e.g., 

moving people or furniture) degrade accuracy [5,6]. 

Additionally, computational complexity in algorithms like K-

Nearest Neighbors (KNN) and Support Vector Machines 

(SVM) hinders real-time performance on mobile devices 

[7,8]. These issues necessitate robust, efficient solutions for 

reliable indoor localization. 

To address these challenges, this research proposes the 

integration of a Multivariate Gaussian Mixture Model 

(MGMM) algorithm into an Android-based IPS. Unlike 

deterministic methods, MGMM probabilistically models the 

joint distribution of RSSI signals across multiple access points 

(APs), capturing inherent uncertainties caused by 

environmental noise [9]. By combining Maximum Likelihood 

Estimation (MLE) for parameter optimization and Bayes’ 

Theorem for posterior probability estimation, MGMM adapts 

dynamically to signal variations while maintaining 

computational efficiency [10,11]. Prior studies demonstrate 

MGMM’s superiority over KNN and SVM in handling 

multimodal RSSI distributions—common in indoor 

environments due to multipath effects [12]—but few have 

implemented it in a practical, end-to-end mobile application. 

For instance, Alfakih et al. [13] validated MGMM’s 

theoretical accuracy but did not deploy it on resource-

constrained devices, while Zhu et al. [14] used neural networks 

for fingerprinting at the cost of high computational overhead. 

This research bridges this gap by developing a lightweight, 

real-time Android application leveraging MGMM’s strengths 

for scalable IPS deployment. 
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The primary objectives of this study are threefold: 

• Design and implement an Android application that 

estimates indoor positions using MGMM-based Wi-Fi 

RSSI fingerprinting, supported by a backend system 

(Express.js) and MySQL database for fingerprint 

storage. 

• Evaluate the system’s accuracy and error metrics—

including success rate within a 1-meter tolerance radius, 

Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE)—in both furnished and empty 

environments. 

• Measure system latency to ensure real-time 

responsiveness suitable for navigation applications. 

Relevant literature underscores the viability of this 

approach. Rizk et al. [15] achieved high accuracy using hybrid 

RSSI/RTT methods but noted added complexity from 

specialized hardware. In contrast, our system relies solely on 

commercial Wi-Fi APs. Liu et al. [16] confirmed MGMM’s 

effectiveness in modeling RSSI distributions but highlighted 

sensitivity to initial parameters—a risk mitigated here through 

MLE-based calibration. Meanwhile, Xia et al. [17] emphasized 

fingerprinting’s superiority over trilateration in cluttered 

spaces but identified database-update bottlenecks, which our 

static fingerprint database streamlines. Crucially, this research 

extends Li et al.’s [18] probabilistic framework by integrating 

MGMM into a user-friendly mobile platform, demonstrating 

practical viability where prior works focused on simulations. 

By addressing signal instability through probabilistic modeling 

and optimizing for mobile efficiency, this work offers a 

significant step toward accessible, high-accuracy indoor 

navigation. 

II. METHODS 

Figure 1 illustrates the research methodology flowchart 

employed by the authors to acquire the necessary data. The 

process initiates with a Literature Review, during which the 

authors analyze prior studies and academic publications to 

identify areas requiring further investigation. The insights 

derived from this review provide the foundation for 

selecting a research topic and subsequently formulating the 

problem to be addressed. 

System Architecture Design 

Figure 2 illustrates the RSSI data processing workflow for 

the Wi-Fi fingerprint-based indoor localization system. The 

Android smartphone acquires RSSI measurements from 

three access points (APs) during the data acquisition phase. 

A dataset of 1000 RSSI samples is compiled through 

random selection of 900 values from collected 

measurements, supplemented by 100 unique readings. 

This dataset undergoes Maximum Likelihood Estimation 

(MLE) processing to compute critical parameters: the mean 

values and covariance matrix characterizing RSSI 

distribution. These parameters form the basis for 

Multivariate Gaussian Mixture Models (MGMM) at 

designated locations. Using Retrofit, the results are 

transmitted to an Express.js backend server via RESTful 

API, where they are persistently stored in a MySQL 

database. The database's MLE table systematically 

organizes location coordinates (x, y), mean values, and 

covariance matrices for subsequent positioning operations. 

 
Figure 1. Research Flowchart 

The Wi-Fi fingerprint-based indoor localization system 

depicted in Figure 3 operates through a two-phase workflow. In 

the initial setup phase (executed once), precomputed statistical 

parameters—including mean and covariance values for all 

monitored locations—are retrieved from a MySQL database via 

an Express.js backend using Retrofit. These parameters serve as 

spatial priors to inform subsequent Bayesian inference. 

During the operational phase (continuously repeated), the 

system first acquires real-time RSSI measurements from three 

access points using an Android smartphone. A Multivariate 

Gaussian Mixture Model (MGMM) then calculates location-

specific likelihoods by comparing these live RSSI values against 

the stored statistical profiles. Bayesian inference integrates the 

computed likelihoods with spatial priors to derive posterior 

probabilities for each potential location. The position associated 

with the highest posterior probability is selected as the final 

estimated location. 

By leveraging historical signal distribution data, this 

probabilistic framework enhances reliability in GPS-denied 

environments, addressing Wi-Fi signal variability more 

effectively than deterministic approaches. The integration of 

spatial priors and real-time signal analysis ensures robust 

performance in dynamic indoor settings. 
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Figure 2. RSSI Data Processing Flowchart 

 
Figure 3. Position Estimation Flowchart 

The data collection was conducted in a furnished indoor 

space measuring approximately 9.06 × 6 meters (Figure 4), 

containing typical household furniture including tables, 

wardrobes, beds, and sofas. The room was functionally divided 

into sleeping areas, living spaces, and a motorcycle parking area, 

with three access points strategically positioned for 

comprehensive coverage. While the furniture introduced 

multipath effects and potential signal attenuation, the 

environment remained stable with minimal human activity during 

measurements, ensuring consistent RSSI data collection and 

adequate signal variation for accurate fingerprint construction. 

RSSI measurements were systematically collected using a 

1-meter grid spacing across the research area (Figure 5). At each 

measurement point, an Android smartphone collected 100 unique 

RSSI readings from the three access points to ensure statistical 

robustness and reduce environmental noise effects. Data 

collection incorporated device orientation variations by 

positioning the smartphone on flat surfaces and holding it 

statically while standing, ensuring the fingerprint database 

reflected realistic signal conditions across different usage 

scenarios. The measurement system relied exclusively on RSSI 

data without additional sensors, emphasizing Wi-Fi 

fingerprinting reliability as the sole positioning basis. 

The 1-meter grid interval was selected as an optimal 

compromise between spatial accuracy, data collection efficiency, 

and computational feasibility. According to Torres-Sospedra & 

Moreira (2017) [19] grid spacing below 1 meter does not 

significantly improve positioning accuracy, as the decorrelation 

distance of indoor RSSI signals is approximately 1 meter. 

Additionally, considering Indonesian housing standards requiring 

7.2 m² per person [20], intervals exceeding half the room 

dimension (~1.8 m) would increase location misidentification 

risks. Therefore, the 1-meter interval provides optimal spatial 

resolution while maintaining practical feasibility for smartphone-

based indoor positioning systems. 

 
Figure 4. Furnished Space Research Area Plan 
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Figure 5. RSSI Measurement Coordinate Point Layout for 

Furnished Room 

The data collection was conducted in an unfurnished 

indoor space measuring 4.65 × 3.65 meters, as illustrated in 

Figure 6. The room was divided into a 1-meter grid system along 

both X and Y axes, creating 12 measurement points marked by 

black dots. Three access points (AP) were positioned on flat 

surfaces at approximately 1.2 meters height to ensure optimal 

signal coverage across the measurement area. Due to the 

completely empty room without furniture or other objects, 

signal interference such as multipath effects and attenuation 

originated solely from wall surfaces, providing a controlled 

environment for baseline RSSI measurements and minimizing 

environmental variables that could affect signal propagation 

patterns. 

 
Figure 6. RSSI Measurement Coordinate Point Layout for 

Unfurnished Room 

The experimental setup comprises a Vivo Y95 Android 

smartphone as the RSSI data collection device and a three-node 

wireless access point network for indoor positioning 

measurements. Table 1 details the smartphone specifications, 

including its Snapdragon 439 processor, 4 GB RAM, and Wi-Fi 

802.11 b/g/n connectivity capabilities that enable reliable RSSI 

signal detection and processing. The wireless infrastructure 

consists of three access points with specifications outlined in 

Tables 2, 3, and 4: an EchoLife EG8245H5 GPON terminal 

(Table 2) and two ZTE ZXHN F609 GPON terminals (Tables 3 

and 4), all operating on IEEE 802.11 b/g/n standards at 2.4 GHz 

with 2×2 MIMO configuration and supporting transmission 

speeds up to 300 Mbps. 

Table 1. Android Smartphone specifications as a RSSI data 

collection and positioning tool 

Category Detail 

Model & 

System 

Vivo Y95, Android 8.1 (Oreo) with 

Funtouch OS 4.5 interface 

Chipset & 

CPU 

Qualcomm SDM439 Snapdragon 439 

(12 nm); Octa-core (4×1.95 GHz 

Cortex-A53 & 4×1.45 GHz Cortex-A53) 

GPU Adreno 505 

Wi-Fi 

Connectivity 

Wi-Fi 802.11 b/g/n; Wi-Fi Direct 

Table 2. Access Point Specification 1 

Category Detail 

Model & Type EchoLife EG8245H5 - GPON 

Optical Network Terminal (ONT) 

for Huawei's FTTH solution 

Wi-Fi Standard 

& Speed 

IEEE 802.11 b/g/n (2.4 GHz) with 

2×2 MIMO, up to 300 Mbps 

Power Supply DC 12 V ⎓ 1 A (adapter input 100-

240 VAC, 50/60 Hz) 

Table 3. Access Point Specification 2 

Category Detail 

Model & Tipe ZTE ZXHN F609 – GPON Optical 

Network Terminal (ONT) 

Standar & 

Kecepatan Wi-Fi 

IEEE 802.11b/g/n (2×2 MIMO) @ 

2.4 GHz, hingga 300 Mbps 

Daya & Catu 

Daya 

Power: 12 V DC 1.5 A (adapter 

input 100–240 VAC, 50–60 Hz); 

Rata-rata konsumsi: ~7–11 W 

Table 4. Access Point Specification 3 

Category Detail 

Model & 

Type 

ZTE ZXHN F609 V2.0 - GPON Optical 

Network Terminal (ONT) for FTTH, 

desktop & wall mounting 

Wi-Fi 

Standard & 

Speed 

IEEE 802.11b/g/n (2×2 MIMO @ 2.4 

GHz), two 5 dBi external antennas 

Power 

Supply 

12 V DC 1.0 A via adapter (100–240 

VAC, 50/60 Hz) 
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Figure 7. Data Collection Interface Design 

The indoor positioning system implements two distinct 

Android applications with specific purposes and target users. 

The Data Collection Application (Figure 8) is designed for 

developers to collect and map location data through a one-time 

setup process. This application features coordinate input fields 

for manual X and Y coordinate entry with validation to prevent 

duplicate entries, a "Start Data Collection" button to initiate the 

data gathering process, a progress bar for real-time monitoring, 

and an "Upload to Database" button for data storage. The 

interface also displays detected access points with SSID, MAC 

address, and RSSI values, along with a history section showing 

previously collected coordinate data. 

 
Figure 8. Real-time Location Interface Design 

The Real-time Location Application (Figure 9) serves end-

users by utilizing the developer-collected data to display current 

indoor positioning on a floor plan map. The interface consists of 

three main components: a floor plan display providing spatial 

context of the building layout, current room information showing 

the user's present location with room name and description, and a 

comprehensive room list displaying all available rooms with their 

respective descriptions. Room data and descriptions are 

hardcoded into the application, requiring code modification and 

recompilation for any changes to floor plans or room information. 

This dual-application approach provides an efficient solution 

where the data collection app enables accurate location database 

construction while the real-time app delivers accessible 

positioning information to end-users. 
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Figure 9. API Service for Location Data Management 

Flowchart 

The system implements a RESTful API service for 

managing location data through two primary operations, as 

illustrated in Figure 7. The POST request workflow enables data 

storage by sending mean values and covariance matrices in 

JSON format to the /locationData endpoint on the localhost 

server. The API server utilizes body-parser middleware for 

JSON processing and the mysql2 library to store data in the 

MySQL database, returning a success confirmation to the client 

application upon completion. 

The GET request workflow facilitates data retrieval when 

the application requests location data from the same endpoint. 

The API server queries the database using mysql2, retrieves the 

stored mean and covariance matrix data, converts it to JSON 

format, and sends the response back to the requesting 

application. This bidirectional communication system ensures 

efficient data management for the fingerprinting database, with 

all operations running on localhost to maintain system 

performance and data integrity during the positioning process. 

Position Estimation Algorithm Design 

 
Figure 10. Algorithm for Position Estimation Flowchart 

The position estimation algorithm integrates three 

sequential stages: Maximum Likelihood Estimation (MLE), 

Multivariate Gaussian Mixture Model (MGMM), and Bayes' 

theorem, as illustrated in Figure 10. The MLE stage processes 

1000 RSSI samples from three access points at each location 

coordinate (x,y) to calculate statistical parameters. For each 

location, the mean values are computed as: 

𝜇1 =
1

𝑛
∑ 𝑟𝑖1,

𝑛

𝑖=1

    𝜇2 =
1

𝑛
∑ 𝑟𝑖2,

𝑛

𝑖=1

    𝜇3 =
1

𝑛
∑ 𝑟𝑖3

𝑛

𝑖=1

 (1) 

where rᵢ₁, rᵢ₂, rᵢ₃ represent RSSI values from the three APs for 

sample I, while n is the number of samples (1000 in this case). 

The covariance matrix computed as: 

Σ =
1

𝑛
∑(𝑥𝑖 − μ)(𝑥𝑖 − μ)𝑇

𝑛

𝑖=1

 (2) 

captures the statistical relationships between RSSI signals from 

different access points, forming a 3×3 matrix containing 

variances and covariances. Where 𝑥ᵢ is the i-th data vector out of 

a total of n samples 
The MGMM stage utilizes MLE parameters to model the 

multivariate Gaussian distribution for each location. The 

likelihood function 

𝑝(𝑹|𝐿𝑘) =
1

(2𝜋)𝑑/2|Σ𝑘|1/2 exp (−
1

2
(𝑹 − 𝜇𝑘)𝑇Σ𝑘

−1(𝑹 − 𝜇𝑘))  (3) 

calculates the probability of observing RSSI vector R at location 

Lₖ, where d represents data dimensionality (3 APs), and μₖ, Σₖ 

are location-specific parameters. This likelihood quantifies how 

well new RSSI measurements match the statistical 

characteristics of each reference location. 

The final stage applies Bayes' theorem to determine the 

most probable location by combining MGMM likelihood with 

prior probabilities. The posterior probability 

𝑃(𝐿𝑘|𝑅) =
𝑃(𝑅|𝐿𝑘) ⋅ 𝑃(𝐿𝑘)

𝑃(𝑅)
 (4) 

integrates the likelihood P(R|Lₖ) from MGMM with prior 

probability P(Lₖ), calculated as the proportion of historical data 

at location Lₖ or assumed uniform if no prior information exists. 

The denominator 𝑃(𝑅) = ∑ 𝑃(𝑅|𝐿𝑖)
𝑁
𝑖=1 ⋅ 𝑃(𝐿𝑖) normalizes the 

posterior probabilities across all locations. The location with the 

highest posterior probability is selected as the final position 

estimate, providing a probabilistically robust indoor positioning 

solution. 
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The indoor positioning system implementation was 

conducted following the completion of architecture, application, 

and algorithm design phases. The system was developed as a 

functional prototype encompassing three primary components: 

Android application development, backend infrastructure, and 

database configuration. 

The Android application was developed using Java 

programming language to handle user interface interactions and 

RSSI data processing. An Express.js backend server was 

implemented to manage data communication between the 

mobile application and database. MySQL database was 

configured for storing RSSI fingerprint data and Maximum 

Likelihood Estimation (MLE) calculation results. 

The implementation process involved strategic placement 

of three WiFi access points according to the predetermined floor 

plan design. The system was deployed in a real-world 

environment that accurately represents actual usage conditions, 

incorporating considerations for physical obstacles and signal 

strength variations that typically affect indoor wireless 

propagation. 

System Testing 

To ensure the Android indoor positioning application 

using Multivariate Gaussian Mixture Model (MGMM) 

algorithm functions effectively, comprehensive testing was 

conducted to evaluate accuracy, error rates, and system latency. 

Testing was performed in a pre-mapped indoor environment 

using a grid-based approach with 1-meter intervals, where each 

test point had predetermined (x, y) coordinates for position 

estimation based on RSSI data from three access points. 

• Position Estimation Accuracy Testing 

Accuracy assessment measured the system's ability to 

estimate user positions within a tolerance radius of ≤1 meter. 

Euclidean distance was calculated using: 

𝑑 = √(𝑥𝑒 − 𝑥𝑟)2 + (𝑦𝑒 − 𝑦𝑟)2 (5) 

where (𝑥𝑒, 𝑦𝑒) represents estimated coordinates, (𝑥𝑟 , 𝑦𝑟) 

represents actual coordinates, and d represents distance 

between estimated position and actual position. Accuracy 

percentage was calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = (
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙

) × 100 (6) 

where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 represents the number of estimates that are 

within the tolerance radius (≤1 meter) and 𝑁𝑡𝑜𝑡𝑎𝑙 represents 
total number of tests performed. 

• Error Rate Testing 

Two primary error metrics were employed to evaluate 

error rate. The Mean Absolute Error (MAE) measures the 

average absolute deviation between estimated positions and 

ground-truth values, calculated as: 

𝑀𝐴𝐸 =
1

𝑛
∑(|𝑥𝑒 − 𝑥𝑟| + |𝑦𝑒 − 𝑦𝑟|)

𝑛

𝑖=1

 (7) 

where (𝑥𝑒, 𝑦𝑒) represents coordinates of the estimated user 

position on the i-th test, (𝑥𝑟 , 𝑦𝑟) represents actual coordinates, 

and n represents total number of trials. Complementing this, 

the Root Mean Square Error (RMSE) accounts for error 

variability by assigning greater weight to extreme deviations, 

making it sensitive to significant outliers. This metric, 

computed using: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑((𝑥𝑒 − 𝑥𝑟)2 + (𝑦𝑒 − 𝑦𝑟)2)

𝑛

𝑖=1

 (8) 

 

• Latency Testing 

System latency was measured across three stages: RSSI 

data acquisition (𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡), processing time using MGMM 

(𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠), and result display (𝑇𝑑𝑖𝑠𝑝𝑙𝑎𝑦). Total latency was 

calculated as: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 + 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑇𝑑𝑖𝑠𝑝𝑙𝑎𝑦  (9) 

The average latency was calculated with the formula: 

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑡𝑜𝑡𝑎𝑙1 + 𝑇𝑡𝑜𝑡𝑎𝑙2+. . . +𝑇𝑡𝑜𝑡𝑎𝑙𝑛

𝑇𝑜𝑡𝑎𝑙  𝑡𝑒𝑠𝑡𝑖𝑛𝑔 (𝑛𝑡𝑜𝑡𝑎𝑙)
 (10) 

Testing the position estimation accuracy and error rate is done 

30 times at three test points in the room to ensure statistical 

significance, with all measurements performed under consistent 

environmental conditions. In addition, the delay time (Latency) 

test will also be conducted 30 times. 

Data Analysis 

Data analysis is carried out to evaluate the results of system 

testing in determining the position of users in the room using the 

Multivariate Gaussian Mixture Model (MGMM) algorithm 

based on Wi-Fi RSSI-Fingerprint. The data obtained from the 

tests will be analyzed to determine the level of accuracy, error 

rate, and latency. The results of this analysis will be compared 

with predetermined success standards to determine the extent to 

which the system can be effectively used in indoor navigation. 

• Accuracy Classification: 

▪ ≥80%: Sufficient for indoor navigation 

▪ 60-79%: Usable but requires algorithm optimization 

▪ <60%: Inadequate, requiring system improvement 

• Error Categories: 

▪ Very Accurate: MAE ≤0.3m, RMSE ≤0.5m 

▪ Accurate: MAE 0.3-0.7m, RMSE 0.5-1.0m 

▪ Moderately Accurate: MAE 0.7-1.5m, RMSE 1.0-

2.0m 

▪ Poor Accuracy: MAE >3.0m, RMSE >4.0m 

• Latency Performance: 

▪ Very Fast: ≤0.5 seconds 

▪ Fast: 0.5-1.0 seconds 

▪ Slow: ≥1.0 seconds 

III. RESULT AND DISCUSSION 

The signal strength heatmaps visualize RSSI distribution from 

each access point using color gradations in dBm units. Figure 11 

shows the Ekahau Best Practices color scale ranging from -85 

dBm (gray, very weak) to -30 dBm (bright green, very strong). 

This visualization identifies signal strength zones and potential 

blind spots for fingerprinting analysis. 

Figures 12-14 display RSSI distributions for each AP in the 

furnished room, while Figures 15-17 show distributions in the 

unfurnished room. The heatmaps were generated using Ekahau 

AI Pro version 11.1.4 software. 

RSSI values are primarily influenced by distance between 

the smartphone and access points, with signal attenuation 

occurring due to free space path loss. Physical obstacles (walls, 

furniture, construction materials) create shadowing effects and 

multipath fading. Additional factors include antenna radiation 

patterns, interference from neighboring devices, and smartphone 

orientation during measurements. 

 
Figure 11. RSSI signal strength color scale based on Ekahau 

Best Practices (dBm) 
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Figure 12. Access Point 1 furnished room RSSI distribution 

heatmap 

 
Figure 13. Access Point 2 furnished room RSSI distribution 

heatmap 

 
Figure 14. Access Point 3 furnished room RSSI distribution 

heatmap 

 
Figure 15. Access Point 1 unfurnished room RSSI distribution 

heatmap 

 
Figure 16. Access Point 2 unfurnished room RSSI distribution 

heatmap 
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Figure 17. Access Point 3 unfurnished room RSSI distribution 

heatmap 

The Android application prototype consists of two distinct 

components: the Data Collection App and Real-Time Location 

App, as illustrated in Figures 18 and 19. Both applications were 

developed according to the interface design specifications 

outlined in Figures 8 and 9. 

 
Figure 18. Data Collection App 

The Data Collection App (Figure 18) serves as a specialized 

tool for gathering RSSI data from three access points at each grid 

point within the research location floor plan. The application 

interface displays detected access points with their corresponding 

SSID, BSSID (MAC Address), and signal strength (RSSI) values. 

The data collection process requires users to position themselves 

at specific grid coordinates and input the corresponding x and y 

coordinates into the application. 

Upon initiating data collection via the "Start Data 

Collection" button, the application monitors progress through a 

visual progress bar. The system incorporates validation 

mechanisms to prevent duplicate data collection, displaying a 

"Coordinate data has been taken" warning for previously sampled 

locations. The History section maintains a record of completed 

coordinate measurements. 

During active data collection, the application status changes 

to "Data Collection in Progress," temporarily disabling the 

"Upload to Database" function. Upon completion (100% 

progress), the status updates to "Finish Collect Data." At this 

stage, the application executes Maximum Likelihood Estimation 

(MLE) algorithms in the background to calculate mean values 

and covariance matrices from the collected data. Subsequently, 

the "Upload to Database" button becomes active, enabling users 

to upload the processed MLE-calculated parameters to the 

MySQL database. A brief instructional guide is accessible 

through the question mark icon. 

During the operational phase, the Android application 

collects real-time RSSI measurements simultaneously from all 

three access points using the Android OS's built-in Wi-Fi 

scanning capabilities. The process leverages the standard 

WifiManager.getScanResults() API, which returns a list of all 

detectable Wi-Fi networks within range during a single scan 

cycle. The implementation follows these steps: 

1. Scan Trigger: The application initiates a Wi-Fi scan via the 

Android WifiManager when position estimation is 

requested. 

2. Simultaneous Data Capture: The scan detects signals from 

all nearby APs concurrently. This ensures RSSI values from 

different APs are captured at nearly the same instant, 

minimizing temporal discrepancies caused by signal 

fluctuations. 

3. AP Filtering: The raw scan results are filtered using the pre-

configured MAC addresses (BSSIDs) of the three target 

access points. Only RSSI values from these specific APs are 

extracted for processing. 

4. Vector Formation: The filtered RSSI values (in dBm) from 

the three APs are combined into a single 3-dimensional 

vector: [RSSI_AP1, RSSI_AP2, RSSI_AP3]T 

5. Latency Optimization: The entire scan-to-vector process 

occurs in the 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 phase (Table 7), with an average 

duration of 11–25 ms in typical conditions. This efficiency 

enables real-time operation without specialized hardware. 
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Figure 19. Real-time Location App Furnished Room 

The Real-Time Location App (Figure 19) provides real-

time user positioning based on previously collected coordinate 

data. The main interface displays a location map with a red 

marker indicating the user's current position. Position 

calculations are performed automatically in the background 

whenever the application detects RSSI signals from the three 

access points. 

Below the map display, the "Current Room Info" section 

provides information about the user's present location, including 

room descriptions. The "Room Info" section lists additional 

rooms within the mapped area with corresponding descriptions, 

enabling users to monitor their position accurately and access 

comprehensive room information. 

Figure 20 demonstrates the Real-Time Location App 

variant for unfurnished rooms, maintaining identical 

functionality to the furnished room version (Figure 19). The 

primary difference lies in the floor plan layout, which has been 

adapted to reflect the empty room conditions used in this 

research. This version omits the "Current Room Info" feature for 

displaying room names or descriptions and excludes the 

comprehensive room listing, resulting in a simplified interface 

focused solely on user position mapping within the empty floor 

plan. 

 
Figure 20. Real-time Location App Unfurnished Room 

Figure 20 demonstrates the Real-Time Location App variant 

for unfurnished rooms, maintaining identical functionality to the 

furnished room version (Figure 19). The primary difference lies 

in the floor plan layout, which has been adapted to reflect the 

empty room conditions used in this research. This version omits 

the "Current Room Info" feature for displaying room names or 

descriptions and excludes the comprehensive room listing, 

resulting in a simplified interface focused solely on user position 

mapping within the empty floor plan. 

This research developed two distinct Android applications: 

the Data Collection App (Figure 18) for development team use 

during initial data gathering phases, and the Real-Time Location 

App (Figure 19) for end-user implementation. The Data 

Collection App is specifically designed for developers to capture 

RSSI values at each coordinate point according to the grid 

sampling pattern. As its function is limited to reference data 

collection, this application is not intended for end-users but 

serves as a one-time development tool during system preparation. 

Conversely, the Real-Time Location App represents the 

end-user interface for indoor positioning within mapped 

environments. Users can download and install this application on 

Android smartphones without requiring technical data input. The 

application automatically displays real-time positioning based on 

collected RSSI fingerprints. 
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Given the prototype stage of development, the floor plan 

maps and room listings in the Real-Time Location App remain 

static and cannot be modified or expanded by users. All mapping 

information is hardcoded within the source code rather than 

retrieved from servers or external files, limiting user 

customization capabilities for room addition or editing. 

Accuracy and Error Rate Testing Results 

The system was tested in a furnished room environment at 

three coordinate points: (4,1), (3,3), and (2,6), with 10 trials 

conducted at each position (30 total trials). The accuracy was 

measured using a tolerance radius of ≤1 meter from the actual 

position, calculated using Euclidean distance. The detailed 

furnished room accuracy and error rate testing results are 

presented in Table 5. 

Table 5. Furnished Room Accuracy and Error Rate Testing 

Results 

Trial No. 

Actual 

Position 

(x,y) 

Estimated 

Position 

(x, y) 

Euclidean 

Distance 

(meter) 

1 (4,1) (4,1) 0 

2 (4,1) (4,1) 0 

3 (4,1) (4,1) 0 

4 (4,1) (2,3) 2,8 

5 (4,1) (4,1) 0 

6 (4,1) (4,1) 0 

7 (4,1) (4,1) 0 

8 (4,1) (4,0) 1 

9 (4,1) (4,0) 1 

10 (4,1) (4,0) 1 

11 (3,3) (3,3) 0 

12 (3,3) (3,3) 0 

13 (3,3) (3,3) 0 

14 (3,3) (3,3) 0 

15 (3,3) (3,3) 0 

16 (3,3) (3,3) 0 

17 (3,3) (3,3) 0 

18 (3,3) (3,3) 0 

19 (3,3) (3,3) 0 

20 (3,3) (3,3) 0 

21 (2,6) (2,6) 0 

22 (2,6) (2,6) 0 

23 (2,6) (2,6) 0 

24 (2,6) (2,6) 0 

25 (2,6) (2,6) 0 

26 (2,6) (2,6) 0 

27 (2,6) (2,6) 0 

28 (2,6) (2,6) 0 

29 (2,6) (3,5) 1,4 

30 (2,6) (3,5) 1,4 

The results demonstrated that the system achieved 90% 

accuracy, with 27 out of 30 position estimates falling within the 

acceptable tolerance range. The Mean Absolute Error (MAE) 

was 0.433 meters, while the Root Mean Square Error (RMSE) 

was 0.796 meters. These values indicate low error rates suitable 

for indoor navigation applications. 

The lower MAE compared to RMSE suggests that extreme 

errors (such as the 2.8-meter deviation in trial 4) occur 

infrequently, indicating stable system performance. The 

occasional larger errors are likely attributed to RSSI signal 

fluctuations caused by physical obstacles and limitations in the 

Gaussian distribution assumptions of the MGMM algorithm. 

The 90% accuracy achieved in furnished environments 

meets the acceptable threshold for indoor navigation systems 

(≥80%). The error metrics (MAE: 0.433m, RMSE: 0.796m) fall 

within the "low error" category, confirming the system's 

suitability for indoor positioning applications. 

To establish baseline performance, identical testing was 

conducted in an empty room without furniture at coordinates 

(0,0), (2,2), and (3,0). The detailed unfurnished room accuracy 

and error rate testing results are presented in Table 6. 

Table 6. Unfurnished Room Accuracy and Error Rate Testing 

Results 

Trial No. 

Actual 

Position 

(x,y) 

Estimated 

Position 

(x, y) 

Euclidean 

Distance 

(meter) 

1 (0,0) (0,0) 0 

2 (0,0) (0,0) 0 

3 (0,0) (0,0) 0 

4 (0,0) (0,0) 0 

5 (0,0) (0,0) 0 

6 (0,0) (0,0) 0 

7 (0,0) (0,0) 0 

8 (0,0) (0,0) 0 

9 (0,0) (0,0) 0 

10 (0,0) (0,0) 0 

11 (2,2) (2,2) 0 

12 (2,2) (2,2) 0 

13 (2,2) (2,2) 0 

14 (2,2) (2,2) 0 

15 (2,2) (2,2) 0 

16 (2,2) (2,2) 0 

17 (2,2) (2,2) 0 

18 (2,2) (2,2) 0 

19 (2,2) (2,2) 0 

20 (2,2) (2,2) 0 

21 (3,0) (3,0) 0 

22 (3,0) (3,0) 0 

23 (3,0) (3,0) 0 

24 (3,0) (3,0) 0 

25 (3,0) (3,0) 0 

26 (3,0) (3,0) 0 

27 (3,0) (3,0) 0 

28 (3,0) (3,0) 0 

29 (3,0) (3,0) 0 

30 (3,0) (3,0) 0 

The system achieved 100% accuracy with all Euclidean 

distances measuring 0 meters. Both MAE and RMSE values were 

0 meters, indicating perfect position estimation in obstacle-free 

environments. 

This ideal performance demonstrates the MGMM model's 

capability under optimal conditions without physical obstructions 

or multipath fading effects. However, this represents a baseline 

scenario, as real-world applications must account for furniture 

and interference factors. 

The stark contrast between furnished room (90% accuracy) 

and empty room (100% accuracy) performance highlights the 

significant impact of environmental factors on positioning 

accuracy. Physical obstacles, furniture, and multipath 

propagation contribute to signal degradation and positioning 

errors. 

Latency Testing Results 

System responsiveness was evaluated by measuring three 
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key processing stages: RSSI data acquisition time (𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡), 

processing time (𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠), and result display time (𝑇𝑑𝑖𝑠𝑝𝑙𝑎𝑦). 

The total latency (𝑇𝑡𝑜𝑡𝑎𝑙) was calculated as the sum of these 

components. The detailed latency testing results are presented 

in Table 7. 

Table 7. Latency Testing Results 

Trial No. 
𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 

(ms) 

𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

(ms) 

𝑇𝑑𝑖𝑠𝑝𝑙𝑎𝑦  

(ms) 

𝑇𝑡𝑜𝑡𝑎𝑙  

(ms) 

1 11 25 4 40 

2 20 13 2 35 

3 25 4 2 31 

4 14 3 2 19 

5 15 3 2 20 

6 19 2 2 23 

7 19 2 2 23 

8 16 3 2 21 

9 1189 2 2 1193 

10 14 1 3 18 

11 21 2 2 25 

12 19 2 2 23 

13 22 2 2 26 

14 17 1 2 20 

15 15 2 1 18 

16 18 1 3 22 

17 19 2 2 23 

18 17 1 2 20 

19 17 2 2 21 

20 22 1 2 25 

21 15 1 2 18 

22 16 1 2 19 

23 15 2 2 19 

24 21 2 3 26 

25 15 2 2 19 

26 19 1 3 23 

27 24 2 2 28 

28 23 2 4 29 

29 16 1 2 19 

30 15 1 2 18 

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒  (ms) 62 

Across 30 trials, the system achieved an average latency of 

62 ms, with the lowest recorded latency of 18 ms and highest of 

1,193 ms (trial 9). The majority of trials demonstrated consistent 

performance below 30 ms, meeting real-time navigation 

requirements (≤500 ms threshold). 

The anomalous high latency in trial 9 (1,193 ms) was 

primarily due to the data acquisition phase (1,189 ms), likely 

caused by Android background processes. This suggests the 

need for multithreading implementation to ensure consistent 

performance. 

The average 62 ms latency demonstrates excellent real-

time performance, well within acceptable limits for indoor 

navigation applications. This rapid response time enables 

smooth user experience and practical deployment feasibility. 

IV. CONCLUSION 

The conclusions of this study are as follows: 

• The system demonstrated 90% accuracy in furnished 

environments and 100% accuracy in obstacle-free 

conditions within a  ≤1-meter tolerance radius. The Mean 

Absolute Error (MAE) was 0.433 meters for furnished 

rooms and 0 meters for unfurnished rooms, while Root 

Mean Square Error (RMSE) measured 0.796 meters and 0 

meters respectively. These results confirm the MGMM 

algorithm's effectiveness in modeling RSSI signal 

distributions for indoor positioning. 

• The system exhibited excellent responsiveness with an 

average latency of 62 ms (range: 18-1,193 ms), well below 

the 1-second threshold required for real-time navigation 

applications. 

• The integration of MySQL database, Retrofit, and 

Express.js as backend infrastructure proved efficient for 

storing and managing RSSI fingerprint data, enabling 

responsive and stable Android application operation. 

For practical deployment, several enhancements are 

recommended: 

• Increase the number of access points to improve signal 

variation and reduce blind spots, particularly in areas with 

physical obstructions. Position access points at optimal 

heights (≥190 cm) with appropriate antenna orientations. 

• Implement periodic recalibration at positions with high 

estimation errors and increase RSSI sample size during 

training phases to strengthen model accuracy. 

• Integrate inertial sensors (gyroscope, accelerometer) to 

complement RSSI data and reduce dependency on static 

environmental conditions. 

Here are also some suggestions for future research: 

• Implement automatic fingerprint database updates to create 

adaptive systems that respond to environmental changes. 

• Explore Ultra-Wideband (UWB) technology integration for 

enhanced positioning precision and investigate hybrid 

approaches combining MGMM with deep learning 

algorithms (e.g., CNN) for dynamic environments. 

• Implement multithreading in Android applications to reduce 

latency in data acquisition and processing phases. 

ACKNOWLEDGMENT 

The author would like to express his gratitude to Dr. Ir. Lusia 

Rakhmawati, S.T., M.T. as the research supervisor for all the 

guidance and motivation so that the author could complete this 

research. Thanks are also extended to Dr. Farid Baskoro, S.T., 

M.T. and Miftahur Rohman, S.T., M.T. for all the suggestions 

given to make this research better. Additionally, the author would 

like to thank Syifa Kamilah for their continuous support and 

encouragement throughout this journey. 

REFERENCES 

[1] Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., 

Al-Ammar, M. A., & Al-Khalifa, H. S. (2016). Ultra wideband indoor 
positioning technologies: Analysis and recent advances. In Sensors 

(Switzerland) (Vol. 16, Issue 5). MDPI AG. https://doi.org/10.3390/s1605 

0707 
[2] Xiao, J., Zhou, Z., Yi, Y., & Ni, L. M. (2016). A survey on wireless indoor 

localization from the device perspective. In ACM Computing Surveys 

(Vol. 49, Issue 2). Association for Computing Machinery. 
https://doi.org/10.1145/2933232 

 

[3] Syazwani, C. J. N., Wahab, N. H. A., Sunar, N., Ariffin, S. H. S., Wong, 
K. Y., & Aun, Y. (2022). Indoor Positioning System: A Review. 

International Journal of Advanced Computer Science and Applications, 



Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 84-96 

 

https://doi.org/10.26740/inajeee.v8n2 96 

13(6), 477–490. https://doi.org/10.14569/IJACSA.2022.0130659 

[4] Huang, H., & Gartner, G. (2018). Current trends and challenges in 

location-based services. In ISPRS International Journal of Geo-
Information (Vol. 7, Issue 6). MDPI AG. https://doi.org/10.3390/ijgi7060 

199 

[5] Li, Y., Barthelemy, J., Sun, S., Perez, P., & Moran, B. (2020). A Case 
Study of WiFi Sniffing Performance Evaluation. IEEE Access, 8, 

129224–129235. https://doi.org/10.1109/ACCESS.2020.3008533 

[6] Shafie, M. S., & Nasir Akhyari. (2023). Wi-Fi Received Signal Strength 
Indicator (RSSI) Factors in Influencing Indoor Signal: A Review. 

International Journal of Business and Technology Management, 5(2nd 

International Conference on Business Innovation, Entrepreneurship and 
Technology (ICOBET) 2023), 385–394. https://doi.org/10.55057/ijbtm. 

2023.5.s5.42 

[7] Kadry, R., & Ismael, O. (2020). A New Hybrid KNN Classification 
Approach based on Particle Swarm Optimization. International Journal 

of Advanced Computer Science and Applications, 11(11), 291–296. 

https://doi.org/10.14569/IJACSA.2020.0111137 
[8] Rathnayake, R. M. M. R., Maduranga, M. W. P., Tilwari, V., & 

Dissanayake, M. B. (2023). RSSI and Machine Learning-Based Indoor 

Localization Systems for Smart Cities. In Eng (Vol. 4, Issue 2, pp. 1468–
1494). Multidisciplinary Digital Publishing Institute (MDPI). 

https://doi.org/10.3390/eng4020085 

[9] Raitoharju, M., García-Fernández, Á. F., Hostettler, R., Piché, R., & 
Särkkä, S. (2020). Gaussian mixture models for signal mapping and 

positioning. Signal Processing, 168, 107330. https://doi.org/https://doi. 

org/10.1016/j.sigpro.2019.107330 
[10] Bonakdarpour, M. (2016, January 22). Introduction to EM: Gaussian 

Mixture Models. 

Https://Stephens999.Github.Io/FiveMinuteStats/Intro_to_em.Html. 
[11] Mulyawan, R. (2025, January 5). Bayes Theorem Adalah: Definisi, 

Rumus, dan Contohnya! Https://Rifqimulyawan.Com/Kamus/Bayes-

Theorem/. 
[12] Alfakih, M., Keche, M., & Benoudnine, H. (2015). Gaussian mixture 

modeling for indoor positioning WIFI systems. 2015 3rd International 

Conference on Control, Engineering & Information Technology (CEIT), 

1–5. https://doi.org/10.1109/CEIT.2015.7233072 
[13] Alfakih, M., Keche, M., Hadjira, B., & Abdelkrim, M. (2020). Improved 

Gaussian mixture modeling for accurate Wi-Fi based indoor localization 

systems. Physical Communication, 43. https://doi.org/10.1016/j.phycom 
.2020.101218 

[14] Zhu, H., Cheng, L., Li, X., & Yuan, H. (2023). Neural-Network-Based 

Localization Method for Wi-Fi Fingerprint Indoor Localization. Sensors, 
23(15). https://doi.org/10.3390/s23156992 

[15] Rizk, H., Elmogy, A., & Yamaguchi, H. (2022). A Robust and Accurate 

Indoor Localization Using Learning-Based Fusion of Wi-Fi RTT and 
RSSI. Sensors, 22(7). https://doi.org/10.3390/s22072700 

[16] Liu, F., Liu, J., Yin, Y., Wang, W., Hu, D., Chen, P., & Niu, Q. (2020). 

Survey on WiFi-based indoor positioning techniques. In IET 
Communications (Vol. 14, Issue 9, pp. 1372–1383). Institution of 

Engineering and Technology. https://doi.org/10.1049/iet-com.2019.1059 

[17] Xia, S., Liu, Y., Yuan, G., Zhu, M., & Wang, Z. (2017). Indoor fingerprint 
positioning based on Wi-Fi: An overview. In ISPRS International Journal 

of Geo-Information (Vol. 6, Issue 5). MDPI AG. 

https://doi.org/10.3390/ijgi6050135 
[18] Li, Y., Williams, S., Moran, B., Kealy, A., & Retscher, G. (2018). High-

dimensional probabilistic fingerprinting in wireless sensor networks based 

on a multivariate gaussian mixture model. Sensors (Switzerland), 18(8). 
https://doi.org/10.3390/s18082602 

[19] Torres-Sospedra, J., & Moreira, A. (2017). Analysis of sources of large 

positioning errors in deterministic fingerprinting. Sensors (Switzerland), 
17(12). https://doi.org/10.3390/s17122736 

[20] Fadli, A., & Alexander, H. B. (2021). Berapa Luas Ideal Rumah Orang 

Indonesia? Simak Penjelasannya. Kompas.com. https://www.kompas.com 
/properti/read/2021/10/22/193000021/berapa-luas-ideal-rumah-orang-

indonesia-simak-penjelasannya?page=all 

 

 


