
Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

 https://doi.org/10.26740/inajeee.v8n2 121

Simulation of Braitenberg Method of Differential

Wheeled Robot Using Gazebo ROS Features

Pradana Bagus Mauludin1*, Noorman Rinanto2, Lilik Subiyanto3,

Afif Zuhri Arfianto4, Agus Khumaidi5, Zindhu Maulana Ahmad Putra6
1,2,3,4,5 Automation Engineering Study Program
6 Marine Electrical Engineering Study program

1,2,3,4,5,6 Shipbuilding Institute of Polytechnic Surabaya, Indonesia
1pradanabagus@student.ppns.ac.id, 2noorman.rinanto@ppns.ac.id

Abstract - Differential wheeled robots are one type of mobile robot that is easy to design and

operate. However, cost limitations and the risk of hardware damage due to collisions when the

robot fails to avoid obstacles often become obstacles in direct research on physical devices. To

overcome this, this research was conducted in the form of simulations using the Robot Operating

System (ROS) and Gazebo. The simulation utilizes the Burger model TurtleBot robot and

applies the Braitenberg method as an obstacle avoidance strategy to detect and avoid obstacles

in the surrounding environment. The Braitenberg method is an algorithm designed for wheeled

vehicles to move automatically by utilizing data from left and right-side sensors to control motor

rotation. Therefore, it is necessary to test the implementation of this method to ensure that the

robot is able to move independently while avoiding obstacles in the vicinity.

 Keywords: Turtlebot9, ROS, Gazebo, Turtlebot, Braitenberg

I. INTRODUCTION

The development of robotics technology continues to

progress rapidly, especially in terms of mobility and control

systems (navigation systems) [1]. One type of robot that is

widely developed and applied in various fields is a wheeled

robot. Wheeled robots offer advantages in terms of

mechanical simplicity and ease of control, and are widely

applied to service robots, indoor exploration robots, and

autonomous vehicles. Based on the configuration of the

number of wheels and the control system used, wheeled

robots can be divided into several types, one of which is a

two-wheeled robot. A two-wheeled robot is a type of mobile

robot equipped with one wheel on the right side and one

wheel on the left side. This robot requires a control system

(controller) to maintain balance, because without proper

control, the robot cannot stand or move stably [2].

Mobile robots with a differential two-wheel

configuration are one type of robot that is widely used in

research and industry because of its simplicity in design and

its ability to maneuver in various environments. In

maneuvering a two-wheel robot can also avoid obstacles in

its place. One popular example of this robot is the TurtleBot,

which is often used as a development platform in ROS (Robot

Operating System) based robotics systems. In simulations

using Gazebo, TurtleBot3 can be run to mimic the real

behavior of robots in the physical world. With two main drive

wheels located on the left and right sides. ROS 1 provides

libraries that enable integration and testing of robotics systems

in a modular and structured manner [3].

Simulation is an essential component in the testing phase

of mobile robots, as it allows the evaluation of system

performance in a safe, efficient, and controlled manner prior to

implementation in a real environment. By using simulation,

potential damage to both the robot and the test environment can

be significantly reduced [4]. In the Gazebo simulation

environment, LiDAR sensors can be represented virtually but

still provide data that resembles real conditions. Simulation

using Gazebo makes it easy for users to implement and test the

Braitenberg algorithm in avoiding obstacles, without worrying

about damage to the hardware. In addition, integration with

ROS supports communication between nodes, data processing

from LiDAR sensors, and motor control in a structured and

flexible manner.

In the development of robotics technology, especially in

mobile robots, various challenges arise that need to be

overcome, one of which is the ability of robots to detect and

avoid obstacles effectively to ensure safe and efficient

navigation in various environmental conditions. One method

used to process distance sensor data against motor rotation on

mobile robots is the Braitenberg method. This method is

inspired by the working principle of the biological nervous

system, where motor responses are generated directly from

sensory stimuli through simple yet effective connections. In the

context of obstacle avoidance, the Braitenberg method allows

robots to respond to the environment in real-time by connecting

mailto:1pradanabagus@student.ppns.ac.id
mailto:noorman.rinanto@ppns.ac.id

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

 https://doi.org/10.26740/inajeee.v8n2 122

the proximity sensor output directly to the motor actuators,

resulting in intelligent-looking behavior even without

complex algorithms.

This research aims to design a simulated mobile robot

using Gazebo software, and implement the Braitenberg

method as an obstacle avoidance strategy. Through this

approach, the robot is expected to be able to respond

reactively to its surroundings based on proximity sensor data,

so that it can avoid obstacles automatically in a virtual

environment that resembles real conditions.

II. METHODS

In this research method, we will explain how the data

from the LiDAR sensor is processed and used to implement

the Braitenberg method. The flowchart in Figure 1 shows the

stages of the system in avoiding obstacles by utilizing the

LiDAR sensor integrated with the Braitenberg approach.

Figure 1 System Flowchart

In applying this method, the first step is to integrate the

LiDAR sensor attached to the TurtleBot. This sensor adopts the

principle of laser triangulation by using a camera that captures

infrared rays reflected onto the object in front of the sensor, and

the reflection time of the rays is used to calculate the distance

between the sensor and the object or obstacle [5]. After the data

from the LiDAR sensor is successfully obtained, the system

will process the information to calculate the distance on the left

and right sides with a tilt angle of 30 degrees each. If the data

reading from the sensor is incomplete or fails, the system will

automatically re-read to ensure data accuracy. The validated

distance data is then used in the Braitenberg method approach

for obstacle avoidance. When an object is detected at a distance

of less than 0.5 meters in front of the robot, the robot has the

potential to hit an obstacle, so it is necessary to add conditional

logic (if statement) to the Python program to overcome this

situation. Conversely, if the distance on the left and right sides

exceeds 0.5 meters, it can be assumed that there are no

obstacles around the robot and the robot will continue to move

forward through an obstacle-free area.

ROS (Robot Operating System)

ROS (Robot Operating System) is an operating system for

robots that provides various software in the form of tools,

libraries, and packages used to control robots. ROS is

developed by a community of developers and contributors in

the field of robotics software [6]. Since its appearance, many

institutions and researchers have utilized the RP2 robot from

Willow Garage as an object of research and development in the

field of robotics. In addition, the ROS community has also

developed Turtlebot as a standard platform for ROS-based

wheeled robots.

The development of robotics technology has made

significant progress along with the increasing needs in the

academic and industrial fields. This progress encourages many

companies in the robotics industry to develop and produce

various important components, such as Integrated Circuit (IC),

sensors, and microcontrollers, which act as part of the hardware

system on the robot. Innovation in these components is the

main foundation in creating robotics systems that are

increasingly sophisticated and adaptive to the needs of the

times.

Braitenberg Method

Braitenberg is a two-wheeled vehicle model equipped with

sensors on each motor. This model uses the principle of

sensorimotor coupling, where each motor directly drives one

wheel based on the response of the connected sensors, thus

allowing the vehicle to react to environmental stimuli

automatically [7]. In this research, the Braitenberg method is

used to implement an obstacle avoidance mechanism in the robot

simulation arena. LiDAR sensors are utilized to detect the

presence of obstacles on the right and left sides of the robot. The

information from the sensor is then used to stimulate the

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

 https://doi.org/10.26740/inajeee.v8n2 123

movement of the right and left motors, so that the robot can

react adaptively to the surrounding environmental conditions.

Figure 2. Braitenberg Vehicle

Figure 6 shows an illustration of a wheeled robot model

based on the Braitenberg principle. If the left sensor is

connected to the left motor and the right sensor to the right

motor, the robot will move away from the obstacle, because

the sensor response will increase the speed of the motor on

the same side as it detects the object. Conversely, if the left

sensor is connected to the right motor and the right sensor to

the left motor, the robot tends to approach the obstacle,

because cross sensorimotor coupling causes an increase in

speed on the opposite side to the detection position. From the

above understanding, it can be explained about the program

algorithm that has been made below.

The code above is an application of the Braitenberg

algorithm with a negative cross-coupling (cross-inhibition)

approach, where the motor speed is determined based on the

distance data from the LiDAR sensor. The calculation

process of the Braitenberg algorithm for motor speed follows

the following equation.

𝑛𝑙 = 1 −
𝑅𝑙

𝑅𝑚𝑎𝑥
 (1)

𝑛𝑟 = 1 −
𝑅𝑟

𝑅𝑚𝑎𝑥
 (2)

𝑀𝑙 = 𝑉 × 𝑛𝑟 (3)
𝑀𝑟 = 𝑉 × 𝑛𝑙 (4)

𝑣𝑙𝑖𝑛 =
𝑀𝑟+ 𝑀𝑙

2
 (5)

𝜔 =
𝑀𝑙+ 𝑀𝑟

𝐿
 (6)

The calculation process in the Braitenberg method starts by

determining the left weight 𝑛𝑙 based on the left sensor distance

𝑅𝑙 , and the right weight 𝑛𝑟 based on the right sensor distance

𝑅𝑟 , with both normalized to the maximum sensor distance

𝑅𝑚𝑎𝑥 . These left and right weight values are then used to

calculate the velocities of the left motor 𝑀𝑙 and the right motor

𝑀𝑟 through cross-correlation to the base velocity V, where the

right sensor affects the left motor, and vice versa. Next, the

robot's linear velocity 𝑣𝑙𝑖𝑛 is calculated as the average of the

velocities of the two motors, i.e. 〖𝑀𝑟 𝑠𝑢𝑚 𝑢𝑝 𝑀𝑙〗_l and

then divided by two. The angular velocity ω is obtained from

the difference in the speed of the two motors divided by the

distance between the wheels (L).

Gazebo Application

Developers and communities in the field of robotics have

presented Gazebo and ROS as simulation software that allows

users to learn and develop robots without the need to physically

build them. Gazebo is an open source simulation application

that can be used to simulate hardware or dynamic systems. This

platform supports robot design and artificial intelligence (AI)

system training with fairly accurate simulations, both in

complex indoor and outdoor environments. Gazebo runs on the

Linux operating system and requires adequate graphics

support. Gazebo has also been integrated in the ROS

installation package. ROS itself is designed for robot software

development, while Gazebo is used to simulate its hardware

aspects.

Turtlebot Burger

R Turtlebot is a small mobile burger developed by Robotis

and the ROS (Robot Operating System) community. The robot

uses a two-wheel differential configuration and is designed as

an open-source platform intended for development and

research activities in the field of robotics, particularly in terms

of mapping and obstacle avoidance.

The TurtleBot3 Burger is compact, lightweight, and

modular, making it easy to change and expand as needed. The

robot is equipped with essential components, such as an

OpenCR microcontroller, Raspberry Pi or Jetson Nano, and

various sensors, including motor encoders, LiDAR sensors,

and IMUs. Burger's TurtleBot3 supports ROS and supports

Gazebo simulation. Figure 2 shows the shape of the burger

turtlebot.

In this research, we will simulate the movement of wheeled

robots without using physical hardware, so as to minimize the

risk of direct collision or damage. Simulation of obstacle

avoidance on this robot will be carried out using one of the

Gazebo platforms provided by ROS.

Listening Code Braitenberg

kanan_weight = max(0.0, min(1.0, 1.0 - kanan_avg))
kiri_weight = max(0.0, min(1.0, 1.0 - kiri_avg))
kanan_motor = base_speed * (1.0 - kiri_weight)
kiri_motor = base_speed * (1.0 - kanan_weight)
twist.linear.x = (kanan_motor + kiri_motor) / 2.0
twist.angular.z = (kiri_motor - kanan_motor) / 0.2

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

 https://doi.org/10.26740/inajeee.v8n2 124

Figure 3 Turtlebot Burger

Arena Planning

The design of the simulation environment for TurtleBot

was carried out using the Gazebo application. In this study,

two types of arenas with different design variations and

dimensions were developed, each designed to evaluate the

robot's ability to avoid obstacles in various environmental

scenarios. Figure 4 shows Arena 1, which is the default

simulation environment built into TurtleBot known as Stage

4. This arena was used in the first simulation trial. Arena 1

has a relatively simple structure, with walls as barriers that

serve as obstacles. The design resembles a maze with several

narrow passages that challenge the robot's navigation and

obstacle avoidance capabilities effectively.

Next, Figure 5 shows Arena 2, which is also the built-in

simulation environment of TurtleBot and is known as House.

Compared to Arena 1, Arena 2 has a higher level of

complexity. The design of this arena resembles the interior of

a house, complete with room dividers and narrow pathways,

thus adding challenges for the robot in detecting and avoiding

obstacles. Both types of arenas are used to evaluate the

performance of the obstacle avoidance algorithm under

different environmental conditions, in order to test the

reliability and adaptability of the developed system.

Figure 2.Arena 1

Figure 5. Arena 2

III. RESULT AND DISCUSSION

LiDAR Sensor Testing

The coin acceptor test was conducted partially to determine

the LiDAR sensor testing is used to obtain data from scanning

using a laser beam. The data generated includes information

such as angle_min, angle_max, angle_increment,

time_increment, scan_time, range_min, range_max, ranges,

and intensities. LiDAR sensor testing was carried out using the

Gazebo platform, because the sensor was already installed by

default on TurtleBot Burger. To obtain and display the scan

data, the rostopic echo /scan command was used through the

terminal. The results of the scan are shown in Figure 6, which

includes parameters such as angle_min, angle_max,

angle_increment, time_increment, scan_time, range_min,

range_max, ranges, and intensities. Through this test, it is

expected that the sensor is able to function optimally in

processing data into accurate distance information.

Figure 6. LiDAR Sensor Testing

Arena Testing 1

This test starts by entering the catkin_ws folder in the

folder that has the turtlebot package that has been downloaded.

Then run Gazebo on ROS and run the Braitenberg node with

Obstacle

tube

Wall

Obstacle

Turtlebot
Burger

Floor

Floor

Table

Turtlebot Burger

Closet

Wall

Obstacle

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

 https://doi.org/10.26740/inajeee.v8n2 125

the file name braitenberg.py contained in the ROS package

that was previously created. Testing was carried out using

TurtleBot Burger in the Stage 4 arena on Gazebo, with the

aim of evaluating whether the Braitenberg algorithm can

function properly in avoiding obstacles.

Figure 7. Stage 1 Testing

Figure 8. Stage 2 Testing

Figure 9. Stage 3 Testing

Figure 10. Stage 4 Testing

In Figure 7, it can be seen that the robot moves straight

when it first runs the braitenberg.py node until the 28th

second. After 42 seconds, as shown in Figure 8, the robot starts

to detect an obstacle in front of it. Then, at the 49th second as

shown in Figure 9, the robot turns left and returns to the starting

point. Based on the experiments in Arena 1, the robot shows

the ability to maneuver well in finding free space and avoiding

obstacles in the form of maze walls.

Arena Testing 2

The second test was conducted in the 2-house arena by

running the Gazebo simulation using the turtlebot3_house.

launch file. This test procedure is similar to the first test, both

in terms of the program and the way the robot operates, but is

carried out in a different and more complex environment

because there are narrow rooms resembling the interior of a

house. Experiments in this arena can be observed through the

images presented below.

Figure 11. House 1 Testing

Figure 12. House 2 Testing

Figure 13. House 3 Testing

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

 https://doi.org/10.26740/inajeee.v8n2 126

Figure 14. House 4 Testing

Based on Figure 14, it can be seen that the robot

successfully avoided the obstacle and performed a turning

maneuver to return to the starting point of its movement.

Figure 15. House 5 Testing

When running the braitenberg.py node, the robot moved

straight ahead at 3 minutes 53 seconds, as shown in Figure

12. Furthermore, at 4 minutes 2 seconds, the robot detected

an obstacle, then turned around and turned right to return to

the starting position, as shown in Figure 13. However, on its

way, the robot encountered an obstacle when it hit a table leg,

as shown in Figure 15. At the time of the collision, the robot

did not show an avoidance response and remained stationary.

This is because the LiDAR sensor does not read any objects

within less than 0.5 meters on the left or right side, so the

motor speed remains constant and does not trigger any

avoidance movement. Under these conditions, the detected

distance on the left side is 2.48 meters, while the right side is

1.97 meters, as shown in Figure 16. To overcome this

obstacle, it is necessary to add logic to the program so that

the robot can continue its movement.

Figure 16. Distance The Robot Hit

IV. CONCLUSION

Based on the test results and implementation of the

Braitenberg algorithm on the TurtleBot Burger robot in the

Gazebo simulation environment, it can be concluded that this

method is able to perform the obstacle avoidance function

effectively as long as the robot is in a fairly open area.

However, in narrow or closed environments, the robot tends to

get stuck and has difficulty finding an exit path or free space.

The advantages of applying the Braitenberg method include its

ability to operate only by utilizing sensor data from the left and

right sides without requiring a mapping process, as well as

relatively simple and non-complex logic calculations.

REFERENCES
[1] M. S. Ummah, “Implementation of Braitenberg Method and Odometry in

Behavior Based Architecture for Fire Extinguishing Robot Navigation
System,” Sustain., vol. 11, no. 1, pp. 1–14, 2019,

[2] M. M. Rokhmat, “Implementation of a two-wheeled robot balance system

using differential integral proportional controller,” J. Mhs. TEUB, 2013.
[3] Jalil, Full Guide : Robot Operating System (ROS). Yogyakarta: Andi, 2022.

[4] Nirmala, R. Hidayati, R. S. Komputer, and U. T. Pontianak, “Ros Based Car

Robot Autonomous Navigation System On Robot,” vol. 10, no. 2, pp. 288–
296, 2024.

[5] Louise, Y. Susanthi, and Muliady, “Mapping and Navigation for Food

Delivery Robots in ROS-Based Restaurants,” Techné J. Ilm. Elektrotek.,
vol. 22, no. 1, pp. 111–128, 2023,

[6] D. A. N. W. J. Teahan, “Using Compression to Find Interesting Behaviors

in Hybrid Braitenberg Vehicles,” no. November 2020, 2021.
[7] S. Stoyanov, K. Gerov, “Mobile Robot Simulation and Navigation in ROS

and Gazebo,” Proceedings of the 2020 International Conference on

Mathematical Methods and Computational Techniques in Science and
Engineering (MCS), pp. 113–120, 2020.

[8] N. Pinrath et al., “Development of a Real-Time Simulator for a Semi-

Autonomous Robot Utilizing Braitenberg Algorithm in CoppeliaSim and
ROS,” Journal of Robotics and Mechatronics, vol. 34, no. 3, pp. 631–642,

2022.

[9] R. Mengacci, G. Zambella, G. Grioli, D. Caporale, M.G. Catalano, A. Bicchi,
“An Open-Source ROS-Gazebo Toolbox for Simulating Robots With

Compliant Actuators,” Frontiers in Robotics and AI, vol. 8, Art. no. 713083,

Aug. 2021.
[10] A. Jalil, “Robot Operating System (ROS) dan Gazebo sebagai Media

Pembelajaran Robot Interaktif,” ILKOM Journal of Computer Science, vol.

10, no. 3, pp. 284–289, Dec. 2018.
[11] B. Udugama, “Mini bot 3D: A ROS Based Gazebo Simulation,” arXiv

preprint arXiv:2302.06368, Feb. 2023.

[12] Y. Hu, J. Zhang, “Manipulation Task Simulation using ROS and Gazebo,”
Proceedings of the 2014 IEEE International Conference on Robotics and

Automation, pp. 599–604, 2014.

[13] L. Huang et al., “Research on Path Planning Based on Braitenberg Robot
Collision Avoidance Method,” Proceedings of the 2021 International

Conference on Mechanical Engineering and Electrical Automation, Atlantis

Press, pp. 211–216, 2021.

