Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

Simulation of Braitenberg Method of Differential
Wheeled Robot Using Gazebo ROS Features

Pradana Bagus Mauludin'*, Noorman Rinanto?, Lilik Subiyanto?,
Afif Zuhri Arfianto*, Agus Khumaidi®, Zindhu Maulana Ahmad Putra®
1.2.3:45 Automation Engineering Study Program
® Marine Electrical Engineering Study program

1,

23456 Shipbuilding Institute of Polytechnic Surabaya, Indonesia

!pradanabagus@student.ppns.ac.id, 2noorman.rinanto@ppns.ac.id

Abstract - Differential wheeled robots are one type of mobile robot that is easy to design and
operate. However, cost limitations and the risk of hardware damage due to collisions when the
robot fails to avoid obstacles often become obstacles in direct research on physical devices. To
overcome this, this research was conducted in the form of simulations using the Robot Operating
System (ROS) and Gazebo. The simulation utilizes the Burger model TurtleBot robot and
applies the Braitenberg method as an obstacle avoidance strategy to detect and avoid obstacles
in the surrounding environment. The Braitenberg method is an algorithm designed for wheeled
vehicles to move automatically by utilizing data from left and right-side sensors to control motor
rotation. Therefore, it is necessary to test the implementation of this method to ensure that the
robot is able to move independently while avoiding obstacles in the vicinity.

Keywords: Turtlebot9, ROS, Gazebo, Turtlebot, Braitenberg

I. INTRODUCTION

The development of robotics technology continues to
progress rapidly, especially in terms of mobility and control
systems (navigation systems) [1]. One type of robot that is
widely developed and applied in various fields is a wheeled
robot. Wheeled robots offer advantages in terms of
mechanical simplicity and ease of control, and are widely
applied to service robots, indoor exploration robots, and
autonomous vehicles. Based on the configuration of the
number of wheels and the control system used, wheeled
robots can be divided into several types, one of which is a
two-wheeled robot. A two-wheeled robot is a type of mobile
robot equipped with one wheel on the right side and one
wheel on the left side. This robot requires a control system
(controller) to maintain balance, because without proper
control, the robot cannot stand or move stably [2].

Mobile robots differential two-wheel
configuration are one type of robot that is widely used in
research and industry because of its simplicity in design and
its ability to maneuver in various environments.
maneuvering a two-wheel robot can also avoid obstacles in
its place. One popular example of this robot is the TurtleBot,
which is often used as a development platform in ROS (Robot
Operating System) based robotics systems. In simulations
using Gazebo, TurtleBot3 can be run to mimic the real
behavior of robots in the physical world. With two main drive
wheels located on the left and right sides. ROS 1 provides

with a

In

https.//doi.org/10.26740/inajeee.v8n2

121

libraries that enable integration and testing of robotics systems
in a modular and structured manner [3].

Simulation is an essential component in the testing phase
of mobile robots, as it allows the evaluation of system
performance in a safe, efficient, and controlled manner prior to
implementation in a real environment. By using simulation,
potential damage to both the robot and the test environment can
be significantly reduced [4]. In the Gazebo simulation
environment, LIDAR sensors can be represented virtually but
still provide data that resembles real conditions. Simulation
using Gazebo makes it easy for users to implement and test the
Braitenberg algorithm in avoiding obstacles, without worrying
about damage to the hardware. In addition, integration with
ROS supports communication between nodes, data processing
from LiDAR sensors, and motor control in a structured and
flexible manner.

In the development of robotics technology, especially in
mobile robots, various challenges arise that need to be
overcome, one of which is the ability of robots to detect and
avoid obstacles effectively to ensure safe and efficient
navigation in various environmental conditions. One method
used to process distance sensor data against motor rotation on
mobile robots is the Braitenberg method. This method is
inspired by the working principle of the biological nervous
system, where motor responses are generated directly from
sensory stimuli through simple yet effective connections. In the
context of obstacle avoidance, the Braitenberg method allows
robots to respond to the environment in real-time by connecting

mailto:1pradanabagus@student.ppns.ac.id
mailto:noorman.rinanto@ppns.ac.id

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

the proximity sensor output directly to the motor actuators,
resulting in intelligent-looking behavior even without
complex algorithms.

This research aims to design a simulated mobile robot
using Gazebo software, and implement the Braitenberg
method as an obstacle avoidance strategy. Through this
approach, the robot is expected to be able to respond
reactively to its surroundings based on proximity sensor data,
so that it can avoid obstacles automatically in a virtual
environment that resembles real conditions.

II. METHODS

In this research method, we will explain how the data
from the LiDAR sensor is processed and used to implement
the Braitenberg method. The flowchart in Figure 1 shows the
stages of the system in avoiding obstacles by utilizing the
LiDAR sensor integrated with the Braitenberg approach.

Membaca Sensor
LiDAR

r

Memproses Data
LiDAR

memproses 30° Kiri
& 30° kanan

Data LIDAR
idak lengkap?,

Iya

Memproses data
jarak ke Braitenberg

w

Robot Menabrak

v

Menambahkan
Logika if

Figure 1 System Flowchart

Lanjut Berjalan

https://doi.org/10.26740/inajeee.v8n2

122

In applying this method, the first step is to integrate the
LiDAR sensor attached to the TurtleBot. This sensor adopts the
principle of laser triangulation by using a camera that captures
infrared rays reflected onto the object in front of the sensor, and
the reflection time of the rays is used to calculate the distance
between the sensor and the object or obstacle [5]. After the data
from the LiDAR sensor is successfully obtained, the system
will process the information to calculate the distance on the left
and right sides with a tilt angle of 30 degrees each. If the data
reading from the sensor is incomplete or fails, the system will
automatically re-read to ensure data accuracy. The validated
distance data is then used in the Braitenberg method approach
for obstacle avoidance. When an object is detected at a distance
of less than 0.5 meters in front of the robot, the robot has the
potential to hit an obstacle, so it is necessary to add conditional
logic (if statement) to the Python program to overcome this
situation. Conversely, if the distance on the left and right sides
exceeds 0.5 meters, it can be assumed that there are no
obstacles around the robot and the robot will continue to move
forward through an obstacle-free area.

ROS (Robot Operating System)

ROS (Robot Operating System) is an operating system for
robots that provides various software in the form of tools,
libraries, and packages used to control robots. ROS is
developed by a community of developers and contributors in
the field of robotics software [6]. Since its appearance, many
institutions and researchers have utilized the RP2 robot from
Willow Garage as an object of research and development in the
field of robotics. In addition, the ROS community has also
developed Turtlebot as a standard platform for ROS-based
wheeled robots.

The development of robotics technology has made
significant progress along with the increasing needs in the
academic and industrial fields. This progress encourages many
companies in the robotics industry to develop and produce
various important components, such as Integrated Circuit (IC),
sensors, and microcontrollers, which act as part of the hardware
system on the robot. Innovation in these components is the
main foundation in creating robotics systems that are
increasingly sophisticated and adaptive to the needs of the
times.

Braitenberg Method

Braitenberg is a two-wheeled vehicle model equipped with
sensors on each motor. This model uses the principle of
sensorimotor coupling, where each motor directly drives one
wheel based on the response of the connected sensors, thus
allowing the wvehicle to react to environmental stimuli
automatically [7]. In this research, the Braitenberg method is
used to implement an obstacle avoidance mechanism in the robot
simulation arena. LiDAR sensors are utilized to detect the
presence of obstacles on the right and left sides of the robot. The
information from the sensor is then used to stimulate the

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

movement of the right and left motors, so that the robot can
react adaptively to the surrounding environmental conditions.

*
\

—

Figure 2. Braitenberg Vehicle

Figure 6 shows an illustration of a wheeled robot model
based on the Braitenberg principle. If the left sensor is
connected to the left motor and the right sensor to the right
motor, the robot will move away from the obstacle, because
the sensor response will increase the speed of the motor on
the same side as it detects the object. Conversely, if the left
sensor is connected to the right motor and the right sensor to
the left motor, the robot tends to approach the obstacle,
because cross sensorimotor coupling causes an increase in
speed on the opposite side to the detection position. From the
above understanding, it can be explained about the program
algorithm that has been made below.

Listening Code Braitenberg

kanan_weight = max(0.0, min(1.0, 1.0 - kanan_avg))
kiri_weight = max(0.0, min(1.0, 1.0 - kiri_avg))
kanan_motor = base_speed * (1.0 - kiri_weight)
kiri_motor = base_speed * (1.0 - kanan_weight)
twist.linear.x = (kanan_motor + kiri_motor) / 2.0
twist.angular.z = (kiri_motor - kanan_motor) /0.2

The code above is an application of the Braitenberg
algorithm with a negative cross-coupling (cross-inhibition)
approach, where the motor speed is determined based on the
distance data from the LiDAR sensor. The calculation
process of the Braitenberg algorithm for motor speed follows
the following equation.

mo=1- (1)
n =1-— Rf;zx (2)
M, =V xn, (3)
M, =V Xn (4)
Dy = (5)

https://doi.org/10.26740/inajeee.v8n2

123

M+ M,
= =0 (6)

The calculation process in the Braitenberg method starts by
determining the left weight n; based on the left sensor distance
R, and the right weight n,. based on the right sensor distance
R, , with both normalized to the maximum sensor distance
Rinax - These left and right weight values are then used to
calculate the velocities of the left motor M; and the right motor
M, through cross-correlation to the base velocity V, where the
right sensor affects the left motor, and vice versa. Next, the
robot's linear velocity vy, is calculated as the average of the
(M, sumup M;] 1 and
then divided by two. The angular velocity o is obtained from
the difference in the speed of the two motors divided by the
distance between the wheels (L).

velocities of the two motors, i.e.

Gazebo Application

Developers and communities in the field of robotics have
presented Gazebo and ROS as simulation software that allows
users to learn and develop robots without the need to physically
build them. Gazebo is an open source simulation application
that can be used to simulate hardware or dynamic systems. This
platform supports robot design and artificial intelligence (AI)
system training with fairly accurate simulations, both in
complex indoor and outdoor environments. Gazebo runs on the
Linux operating system and requires adequate graphics
support. Gazebo has also been integrated in the ROS
installation package. ROS itself is designed for robot software
development, while Gazebo is used to simulate its hardware
aspects.

Turtlebot Burger

R Turtlebot is a small mobile burger developed by Robotis
and the ROS (Robot Operating System) community. The robot
uses a two-wheel differential configuration and is designed as
an open-source platform intended for development and
research activities in the field of robotics, particularly in terms
of mapping and obstacle avoidance.

The TurtleBot3 Burger is compact, lightweight, and
modular, making it easy to change and expand as needed. The
robot is equipped with essential components, such as an
OpenCR microcontroller, Raspberry Pi or Jetson Nano, and
various sensors, including motor encoders, LiDAR sensors,
and IMUs. Burger's TurtleBot3 supports ROS and supports
Gazebo simulation. Figure 2 shows the shape of the burger
turtlebot.

In this research, we will simulate the movement of wheeled
robots without using physical hardware, so as to minimize the
risk of direct collision or damage. Simulation of obstacle
avoidance on this robot will be carried out using one of the
Gazebo platforms provided by ROS.

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

Figure 3 Turtlebot Burger

Arena Planning

The design of the simulation environment for TurtleBot
was carried out using the Gazebo application. In this study,
two types of arenas with different design variations and
dimensions were developed, each designed to evaluate the
robot's ability to avoid obstacles in various environmental
scenarios. Figure 4 shows Arena 1, which is the default
simulation environment built into TurtleBot known as Stage
4. This arena was used in the first simulation trial. Arena 1
has a relatively simple structure, with walls as barriers that
serve as obstacles. The design resembles a maze with several
narrow passages that challenge the robot's navigation and
obstacle avoidance capabilities effectively.

Next, Figure 5 shows Arena 2, which is also the built-in
simulation environment of TurtleBot and is known as House.
Compared to Arena 1, Arena 2 has a higher level of
complexity. The design of this arena resembles the interior of
a house, complete with room dividers and narrow pathways,
thus adding challenges for the robot in detecting and avoiding
obstacles. Both types of arenas are used to evaluate the
performance of the obstacle avoidance algorithm under
different environmental conditions, in order to test the
reliability and adaptability of the developed system.

Obstacle ___;‘
tube
® -

Wall
Obstacle |summmm

Turtlebot
Burger

Figure 2.Arena 1

https://doi.org/10.26740/inajeee.v8n2

Figure 5. Arena 2

III. RESULT AND DISCUSSION

LiDAR Sensor Testing

The coin acceptor test was conducted partially to determine
the LiDAR sensor testing is used to obtain data from scanning
using a laser beam. The data generated includes information
such as angle min, angle max, angle increment,
time increment, scan_time, range min, range max, ranges,
and intensities. LIDAR sensor testing was carried out using the
Gazebo platform, because the sensor was already installed by
default on TurtleBot Burger. To obtain and display the scan
data, the rostopic echo /scan command was used through the
terminal. The results of the scan are shown in Figure 6, which
includes parameters such as angle min, angle max,
angle increment, time increment, scan time, range min,
range max, ranges, and intensities. Through this test, it is
expected that the sensor is able to function optimally in
processing data into accurate distance information.

Figure 6. LiDAR Sensor Testing

Arena Testing 1

This test starts by entering the catkin ws folder in the
folder that has the turtlebot package that has been downloaded.
Then run Gazebo on ROS and run the Braitenberg node with

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

the file name braitenberg.py contained in the ROS package
that was previously created. Testing was carried out using
TurtleBot Burger in the Stage 4 arena on Gazebo, with the
aim of evaluating whether the Braitenberg algorithm can
function properly in avoiding obstacles.

Figure 10. Stage 4 Testing

In Figure 7, it can be seen that the robot moves straight
when it first runs the braitenberg.py node until the 28th

https://doi.org/10.26740/inajeee.v8n2

125

second. After 42 seconds, as shown in Figure 8, the robot starts
to detect an obstacle in front of it. Then, at the 49th second as
shown in Figure 9, the robot turns left and returns to the starting
point. Based on the experiments in Arena 1, the robot shows
the ability to maneuver well in finding free space and avoiding
obstacles in the form of maze walls.

Arena Testing 2

The second test was conducted in the 2-house arena by
running the Gazebo simulation using the turtlebot3 house.
launch file. This test procedure is similar to the first test, both
in terms of the program and the way the robot operates, but is
carried out in a different and more complex environment
because there are narrow rooms resembling the interior of a
house. Experiments in this arena can be observed through the
images presented below.

Figure 11. House 1 Testing

Figure 12. House 2 Testing

Figure 13. House 3 Testing

Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), Vol 8, No 2, 2025, 121-126

=0l

Figure 14. House 4 Testing

Based on Figure 14, it can be seen that the robot
successfully avoided the obstacle and performed a turning
maneuver to return to the starting point of its movement.

A3 |

(OB

Figure 15. House 5 Testing

When running the braitenberg.py node, the robot moved
straight ahead at 3 minutes 53 seconds, as shown in Figure
12. Furthermore, at 4 minutes 2 seconds, the robot detected
an obstacle, then turned around and turned right to return to
the starting position, as shown in Figure 13. However, on its
way, the robot encountered an obstacle when it hit a table leg,
as shown in Figure 15. At the time of the collision, the robot
did not show an avoidance response and remained stationary.
This is because the LiDAR sensor does not read any objects
within less than 0.5 meters on the left or right side, so the
motor speed remains constant and does not trigger any
avoidance movement. Under these conditions, the detected
distance on the left side is 2.48 meters, while the right side is
1.97 meters, as shown in Figure 16. To overcome this
obstacle, it is necessary to add logic to the program so that
the robot can continue its movement.

Figure 16. Distance The Robot Hit

https://doi.org/10.26740/inajeee.v8n2

IV. CONCLUSION

Based on the test results and implementation of the

Braitenberg algorithm on the TurtleBot Burger robot in the
Gazebo simulation environment, it can be concluded that this
method is able to perform the obstacle avoidance function

effectively as long as the robot is in a fairly open area.
However, in narrow or closed environments, the robot tends to
get stuck and has difficulty finding an exit path or free space.
The advantages of applying the Braitenberg method include its
ability to operate only by utilizing sensor data from the left and
right sides without requiring a mapping process, as well as
relatively simple and non-complex logic calculations.

(1

(6]
(7

(8]

91

[10]

(1]
[12]

[13]

126

REFERENCES
M. S. Ummah, “Implementation of Braitenberg Method and Odometry in
Behavior Based Architecture for Fire Extinguishing Robot Navigation
System,” Sustain., vol. 11, no. 1, pp. 1-14, 2019,
M. M. Rokhmat, “Implementation of a two-wheeled robot balance system
using differential integral proportional controller,” J. Mhs. TEUB, 2013.
Jalil, Full Guide : Robot Operating System (ROS). Yogyakarta: Andi, 2022.
Nirmala, R. Hidayati, R. S. Komputer, and U. T. Pontianak, “Ros Based Car
Robot Autonomous Navigation System On Robot,” vol. 10, no. 2, pp. 288—
296, 2024.
Louise, Y. Susanthi, and Muliady, “Mapping and Navigation for Food
Delivery Robots in ROS-Based Restaurants,” Techné J. Ilm. Elektrotek.,
vol. 22, no. 1, pp. 111-128, 2023,
D. A. N. W. J. Teahan, “Using Compression to Find Interesting Behaviors
in Hybrid Braitenberg Vehicles,” no. November 2020, 2021.
S. Stoyanov, K. Gerov, “Mobile Robot Simulation and Navigation in ROS
and Gazebo,” Proceedings of the 2020 International Conference on
Mathematical Methods and Computational Techniques in Science and
Engineering (MCS), pp. 113-120, 2020.
N. Pinrath et al., “Development of a Real-Time Simulator for a Semi-
Autonomous Robot Utilizing Braitenberg Algorithm in CoppeliaSim and
ROS,” Journal of Robotics and Mechatronics, vol. 34, no. 3, pp. 631-642,
2022.
R. Mengacci, G. Zambella, G. Grioli, D. Caporale, M.G. Catalano, A. Bicchi,
“An Open-Source ROS-Gazebo Toolbox for Simulating Robots With
Compliant Actuators,” Frontiers in Robotics and Al, vol. 8, Art. no. 713083,
Aug. 2021.
A. Jalil, “Robot Operating System (ROS) dan Gazebo sebagai Media
Pembelajaran Robot Interaktif,” ILKOM Journal of Computer Science, vol.
10, no. 3, pp. 284-289, Dec. 2018.
B. Udugama, “Mini bot 3D: A ROS Based Gazebo Simulation,” arXiv
preprint arXiv:2302.06368, Feb. 2023.
Y. Hu, J. Zhang, “Manipulation Task Simulation using ROS and Gazebo,”
Proceedings of the 2014 IEEE International Conference on Robotics and
Automation, pp. 599-604, 2014.
L. Huang et al., “Research on Path Planning Based on Braitenberg Robot
Collision Avoidance Method,” Proceedings of the 2021 International
Conference on Mechanical Engineering and Electrical Automation, Atlantis
Press, pp. 211-216, 2021.

