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Abstract – Aviation safety and security are heavily influenced by airport visibility, as pilots require 

clear visual references for landing. However, poor weather conditions can reduce visibility and 

increase the risk of accidents. Therefore, an automated system is needed to classify visibility levels 

quickly and accurately, even when faced with the challenge of imbalanced datasets. This study 

employs a Generative Adversarial Network (GAN) approach, focusing on Vanilla GAN, DCGAN, 

and StyleGAN models. The data used is sourced from CCTV AWOS at Runway 10 of Juanda 

Airport, encompassing 14,458 images from the period of August 13 to 31, 2023. The models are 

evaluated using SSIM scores and feature extraction of color, texture, and HOG at various epochs. 

The results indicate that the Vanilla GAN model at 60 epochs is the most suitable for the minority 

class compared to the other models, based on feature evaluation, SSIM scores, synthetic image 

quality, and loss pattern outcomes. Its simple architecture aids in capturing low variation in the 

dataset, making it superior to more complex architectures like DCGAN and StyleGAN. Further 

optimization and architectural adjustments could enhance the results, especially for datasets with 

low variation like the one used in this study. 
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I. INTRODUCTION 
 

Security and safety are crucial in the world of transportation, 

especially in aviation or air transportation. Several factors, 

including visibility, affect safety and security, with the most 

critical being visibility range, wind direction, wind speed, 

temperature, dew point, and barometric pressure [1]. 

Visibility is the maximum horizontal distance a person with 

normal vision can see from the background under current 

weather conditions [2]. It is crucial to pay attention to 

visibility range when operating an aircraft. The Minister of 

Transportation Regulation Number KM 18 of 2010 

stipulates that no one can operate an aircraft under VFR 

conditions if the visibility or distance from clouds exceeds 

the specified requirements [3].  

Visibility at the airport is crucial for pilots because they 

need visual references for landing. In aeronautical-

meteorological documentation, visibility is a measurable 

characteristic provided by an observer or an automated 

system and expressed in meters or kilometers. It defines the 

farthest distance from which an object with specific 

characteristics can be seen and recognized [4]. 

Poor weather conditions, such as dense fog or heavy rain, 

can reduce visibility and increase the risk of aviation 

accidents. Therefore, an automated system capable of 

quickly and accurately classifying visibility levels on the 

runway is necessary. However, classifying visibility levels 

from an imbalanced dataset is one of the main challenges in 

this research, as it can cause the classification model to be 

less effective in recognizing and classifying rare visibility 

situations. Consequently, specific strategies, such as 

oversampling, undersampling, or other dataset imbalance 

handling techniques, are needed to address this imbalance. 

The dataset used in this research is an imbalanced dataset 

obtained from the CCTV data of AWOS (Automatic 

Weather Observing System) at Juanda Airport, where the 

researchers focus on images from runway 10 of Juanda 

Airport. 

Researching with an imbalanced dataset becomes 

problematic because, in real life, many classifications have 

similar problems. To resolve this, it is necessary to find the 

right way to balance the dataset before classifying [5]. 

Several techniques have been used to deal with imbalanced 

datasets, such as under- and oversampling. However, there 

are drawbacks to both methods. Minority data points are 
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randomly duplicated throughout the oversampling procedure 

in order to enhance their count [6]. Overfitting is frequently 

the result, while undersampling might eliminate significant 

components of the majority class, making it more 

challenging to learn the decision border between classes [7]. 

Due to the common occurrence of data imbalance in real-

world situations, a dataset with imbalanced data was selected 

as the basis for studying visibility modeling using 

Generative Adversarial Networks (GAN). The availability 

of data limits most image processing and classification 

studies, and real-world events often lead to imbalanced class 

distributions. Considering the prevailing visibility 

circumstances, it is likely that high visibility scenarios will 

occur more frequently than bad visibility conditions, which 

aligns with the general patterns of weather. 

Furthermore, the utilization of imbalanced datasets also 

takes into account the necessity of constructing models that 

may offer pragmatic resolutions for real-life scenarios. By 

prioritizing research on data imbalance, the results are 

anticipated to have greater relevance in tackling intricate 

everyday problems, particularly when the minority class 

exerts a substantial influence on decisions or actions. This 

research addresses both the technical difficulties in 

identifying visibility and the real-world dynamics where 

data imbalance is a crucial factor to consider in creating 

effective models. 

The research aims to identify the optimal model by 

utilizing Generative Adversarial Networks (GANs) to 

generate synthetic images, hence addressing the issue of 

imbalanced datasets. Image quality assessment can be 

categorized into two methods: subjective and objective. 

Subjective assessment is a method of evaluating image 

quality that relies on human perception. This approach is not 

as successful and efficient, and it necessitates a significant 

amount of time to locate evaluators and wait for their 

assessments based on personal viewpoints. Objective 

assessment, in contrast, employs mathematical algorithms 

based on precise criteria to evaluate image quality [8]. 

Augmenting the minority class to attain equilibrium or 

approach the quantity of data points in the majority class is 

a crucial measure in tackling imbalanced datasets. This 

research entails conducting meticulous tests to assess the 

efficacy of different strategies in enhancing dataset balance. 

II. METHODS 

Imbalanced dataset 

Data imbalance refers to a situation where certain classes 

have a substantially unequal amount of data in comparison 

to other classes. The class containing a larger amount of 

data is commonly referred to as the majority class, whilst 

the class containing a smaller amount of data is known as 

the minority class. The attributes of imbalanced data can 

undeniably impact the forecasting outcomes of an 

algorithm. The Imbalance Ratio (IR) can be calculated to 

assess the extent of data imbalance, as described in 

reference [9]. Equation 1 presents the mathematical 

expression used to determine the proportion between the 

minority class and the majority class. 

 

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 (𝐼𝑅) =
𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦⬚

𝑛

𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦⬚
𝑛   (1) 

Generative adversarial network 

Over the past twenty years, various techniques have 

been developed to study class imbalance. However, most 

of these techniques have focused on studying binary 

single-label class imbalance in small-scale data with a low-

class imbalance ratio, typically in the range of 1:100 [10].  

In 2014, Goodfellow and his colleagues developed the 

fundamental Generative Adversarial Network (GAN) 

using the multi-layer perceptron (MLP) network. The 

GAN framework comprises two components, namely a 

generator (G) and a discriminator (D), which together form 

a class of deep generative models. These two components 

can be regarded as differentiable systems, although they 

are commonly employed as the generator and 

discriminator in neural networks [11].  

The neural network game is a contest where two neural 

networks compete against each other. The generative 

model has the ability to generate new instances of data, 

whilst the discriminative model is designed to differentiate 

between different types of data instances [12]. Researchers 

in diverse fields have acknowledged the significance of 

Generative Adversarial Networks (GANs) because of their 

capacity to represent intricate real-world image data. 

GANs are important because they have the capability to 

create artificial images and their adversarial learning 

notion is exciting. This concept shows that GANs have the 

capacity to rectify skewed datasets [13]. 

 

Figure 1. GAN block diagram 

Figure 1 depicts a block diagram that illustrates the 

GAN employed in this research. The discriminator (D) 

serves as a binary classifier, differentiating between 

synthetic samples G(z) and authentic samples Xdata. The 

discriminator is trained to classify both genuine and 

counterfeit data with maximum accuracy. Put simply, 

when given actual data Xdata as input, the discriminator 

categorizes it as real data and outputs a numerical value 

that is very near to 1. On the other hand, if the input is data 
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that was created by the generator, the discriminator will 

classify it as fake data and provide a numerical value that 

is very near to 0 [14]. 

Feature extraction is the procedure of categorizing a 

picture database based on its content. Mathematically, 

every feature extraction is represented as an n-dimensional 

vector known as a feature vector. The feature vector's 

components are calculated by image processing and 

analysis techniques, enabling the comparison of one image 

to another. Feature extraction can be categorized into three 

distinct types: low-level, middle-level, and high-level. 

Low-level feature extraction involves analyzing visual 

elements such as color and texture. Middle-level 

extraction focuses on specific areas of a picture specified 

by segmentation. High-level extraction, on the other hand, 

relies on the semantic information included in the image 

[15].  

Color feature extraction entails the examination of an 

image's color, which is composed of pixels that possess 

distinct color intensities. A histogram is used to represent 

the color distribution in each pixel. Histograms are 

employed as a technique for extracting features by 

leveraging the variations in pixel distribution within each 

image. The color histogram of an image is generated by 

converting the colors in the image into binary values and 

then tallying the number of pixels for each binary value. A 

color histogram is a visual depiction of the frequency of 

different colors contained in an image.  

A color histogram of an image is created by dividing 

the colors in the image into separate groups and calculating 

the number of pixels in each group. The image data will be 

represented using color histograms in the RGB and HSV 

color spaces, with 8 bins in each color channel [3].  

Hue, saturation, and value (HSV) are a collection of 

color characteristics that provide insight into how colors 

are perceived by the human eye. The HSV color properties 

can be understood as follows: hue represents colors in the 

range from red to green, saturation represents colors from 

red to pink, and value represents colors from black to white 

[16]. In order to ascertain the outcomes in the HSV color 

space, there exist multiple formulas for computing the 

values of the HSV color space as presented in Equations 2 

to 5. 

 

𝑅 =  
𝑅

255
  𝐺 =

𝐺

255
  𝐵 =

𝐵

255
    (2) 

 

𝑉 (𝑣𝑎𝑙𝑢𝑒)  =  𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒   (3) 

 

𝑆 {
0, 𝑖𝑓 𝑚𝑎𝑥 =  𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛

𝑣
, 𝑖𝑓 𝑚𝑎𝑥 > 0

}   (4) 

 

𝐻 

{
 
 

 
 

0, 𝑖𝑓 𝑚𝑎𝑥 =  𝑚𝑖𝑛

60° (
𝐺−𝐵

𝑚𝑎𝑥−𝑚𝑖𝑛
𝑚𝑜𝑑 6) , 𝑖𝑓 𝑚𝑎𝑥 =  𝑅

60° (
𝐵−𝑅

𝑚𝑎𝑥−𝑚𝑖𝑛
+ 2) , 𝑖𝑓 𝑚𝑎𝑥 =  𝐺

60° (
𝑅−𝐺

𝑚𝑎𝑥−𝑚𝑖𝑛
+ 4) , 𝑖𝑓 𝑚𝑎𝑥 =  𝐵 }

 
 

 
 

 (5) 

 

GLCM, short for Gray-Level Co-occurrence Matrix, is 

a statistical technique employed in texture extraction. It 

takes into account the spatial arrangement of pixels within 

a picture [17]. Out of the 14 features that may be computed 

using GLCM, three significant ones are contrast, 

homogeneity, and entropy.  

Contrast is a quantitative measure of the degree of 

variance in the grey levels found in the co-occurrence 

matrix. When the intensity values of a pixel and its 

adjoining pixel are comparable, the texture contrast is 

significantly reduced. Homogeneity quantifies the degree 

of similarity in the gray-level intensity variations inside 

the picture co-occurrence matrix. Homogeneity is 

considered high when pixel pairings exhibit consistent 

gray-level values.  

Entropy, which is the antithesis of homogeneity, 

quantifies the quantity of unpredictability exhibited by the 

gray-level intensities in the image co-occurrence matrix. 

The entropy value indicates the degree of roughness or 

smoothness of the surface texture [18]. In order to 

ascertain the outcomes of texture feature extraction, many 

equations can be employed, as demonstrated in Equations 

6-8. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗

𝑁𝑔
𝑖   (6) 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
𝑝(𝑖,𝑗)

1+(𝑖−𝑗)2

𝑁𝑔
𝑗

𝑁𝑔
𝑖   (7) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑ ∑ 𝑝(𝑖, 𝑗) 𝑙𝑜𝑔(𝑝(𝑖, 𝑗))2
𝑁𝑔
𝑗

𝑁𝑔
𝑖  (8) 

 

The Histogram of Oriented Gradient (HOG) is a 

feature descriptor used in computer vision and image 

processing for object detection and shape recognition. 

HOG works by capturing the histogram of gradient 

orientations within localized portions of an image. It was 

developed by Navneet Dalal and Bill Triggs in 2005 to 

address the need for a feature that could distinguish 

intricate details in images, especially under variations in 

lighting, pose, and scale.  

The main advantage of HOG is its ability to capture 

edge or gradient structures that are highly characteristic of 

local shapes [4]. HOG operates by dividing an image into 

small connected regions called cells and then calculating 

the histogram of gradient directions within each cell [19]. 

Essentially, HOG relies on the distribution of gradient 

orientations within an image [20]. To determine the results 

of HOG feature extraction, several formulas can be used, 

as shown in Equations 9 and 10. 
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𝐺 = √𝐺𝑥2 + 𝐺𝑦2    (9) 

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐺𝑦

𝐺𝑥
    (10) 

 

G = gradient magnitude 

𝜃 = gradient orientation 

The Structural Similarity Index Method (SSIM) is a 

quantitative measure employed to assess the likeness 

between two images and is thought to be associated with 

the perceptual quality of the Human Visual System (HVS). 

The SSIM model takes into account three factors: loss of 

correlation, luminance distortion, and contrast distortion 

[21]. The SSIM value is a numerical measure that varies 

from 0 to 1. A value of 0 signifies no connection between 

the compared images, while a value of 1 signifies complete 

resemblance.  

SSIM is a perceptual model that takes into account the 

perception of changes in structural information while 

considering picture degradation. This approach works in 

conjunction with other significant perception-related 

factors, such as luminance masking and contrast masking. 

The phrase "structural information" highlights the 

interdependence of pixels or their spatial adjacency. The 

term "dependent pixels" pertains to significant details on 

visual objects within the image domain. Luminance 

masking pertains to the portions of the distortion that are 

less discernible toward the margins of the image. Contrast 

masking, however, pertains to aberrations that are less 

conspicuous in the texture of the image. The SSIM metric 

quantifies the perceived quality of images and videos by 

assessing the similarity between two images: the original 

and the synthesized [22]. The SSIM score is determined 

using many formulas, including those presented in 

Equations 11 and 14. 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
     (11) 

 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
    (12) 

 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
    (13) 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝜎𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
  (14) 

 

Figure 2 depicts a schematic representation of the 

planned research in the form of a block diagram. This 

study consists of two distinct parts. The first phase 

involves generating images using three different 

techniques: Vanilla GAN, StyleGAN, and DCGAN. The 

second phase focuses on extracting features related to 

color, texture, and HOG. 

 

Figure 2. Research blok diagram 

During the image generating step, the model design, 

depicted in Figure 2, comprises two components: feature 

learning and image generation using the learned model. 

The components of this system consist of the input layer, 

generator, discriminator, GAN model, training loop, 

saving generated images, and saving trained models for the 

training process. Afterwards, the steps include loading the 

generator model, generating synthetic images, and saving 

them for the image generation phase. 

Feature learning 

During the feature learning phase, the GAN model 

discerns and isolates significant characteristics from the 

image data utilized for training. The method commences 

with a preprocessing phase, in which photos are loaded, 

scaled, and normalized to guarantee uniformity in the 

utilized data. Subsequently, the image data undergoes a 

sequence of convolutional and activation layers 

specifically engineered to extract significant 

characteristics. The Vanilla GAN model employs a 

straightforward design consisting of convolutional layers 

followed by Leaky ReLU activations. 

 

Figure 3. Proposed GAN model architecture 

In contrast, the StyleGAN and DCGAN models have 

more intricate structures with deeper layers and variations 

in activations, including Leaky ReLU. These disparities 
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affect the model's ability to comprehend information and 

extract intricate characteristics from the photos. In general, 

the purpose of the feature learning stage is to produce 

superior feature representations from the image data. 

During the feature learning step of Vanilla GAN, the 

image data is loaded and processed using a straightforward 

normalization technique that scales the pixel values 

between 0 and 1. The generator model, depicted in Figure 

4, initiates with a Dense layer to convert the latent vector 

into a tensor with dimensions 75x100x128. The Reshape 

layer transforms the tensor into a multi-dimensional tensor 

of dimensions (75, 100, 128). The multi-dimensional 

tensor is upsampled using Conv2DTranspose layers until 

the image dimensions reach the required output of 

(600,800,3). 

The design of the Vanilla GAN discriminator is 

illustrated in Figure 4, which utilizes convolutional layers 

with Leaky ReLU activation. The initial Conv2D layer 

does feature extraction using 64 feature maps, which are 

subsequently augmented to 128 feature maps in the 

following layer. The multi-dimensional tensor obtained 

from feature extraction is subsequently transformed into a 

vector by flattening it. This vector is then used as the input 

for a Dense layer that consists of a single neural network. 

Next, the resulting output is transformed into a probability 

value ranging from 0 to 1 by using a sigmoid activation 

function. 

The generator architecture of DCGAN has a layer 

arrangement that closely resembles that of the Vanilla 

GAN. The process begins by transforming the latent vector 

into a tensor with one dimension, and then further 

converting it into a tensor with several dimensions using 

the Reshape layer. This design incorporates four 

Conv2DTranspose layers, with the inclusion of Batch 

Normalization at each upsampling level to enhance the 

efficiency of training. The initial upsampling stage 

employs 256 filters, contrasting with the Vanilla GAN's 

utilization of 128 filters. 

 

Figure 4. Architecture of the Generator and 

Discriminator in Vanilla GAN 

The discriminator architecture of the DCGAN model, 

consisting of three Conv2D layers for the convolution 

stages with feature maps of 64, 128, and 256. The 

activation function utilized is Leaky ReLU with a 

parameter value of 0.2. Once the convolution stages are 

finished, the output is converted from a tensor to a vector 

so that it may be processed by the Dense layer. This 

processing results in an output in the form of probabilities, 

specifically 0 and 1, using the Sigmoid activation function. 

During the feature learning stage of StyleGAN, the 

model utilizes a more intricate architecture with increased 

depth and employs normalizing techniques such as Batch 

normalizing to accelerate the training process. Style 

modulation is employed to regulate the styles at different 

levels of intricacy in the produced images. The process 

begins by converting the latent vector into a tensor to allow 

for noise injection and style modulation. These tensors are 

then multiplied together to create a modulated tensor, 

which serves as the input for the upsampling stage. This 

model employs three convolutional transpose layers, with 
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the inclusion of Batch Normalization in each 

Conv2DTranspose layer. 

The discriminator architecture of the StyleGAN is 

more intricate than Vanilla GAN and DCGAN, as it 

consists of four convolutional layers with 64, 128, 256, and 

512 feature maps respectively. Due to the abundance of 

feature maps, the discriminator has sufficient capacity to 

extract features from the input. 

Generate images 

During the Generate Images phase of the three 

implemented GAN models, the generator that has been 

trained is utilized to produce novel synthetic images. In the 

Vanilla GAN framework, this procedure entails using the 

`predict` function on the generator model and supplying 

randomly produced noise vectors as input. The generated 

artificial photos are thereafter stored in a designated 

directory. 

In StyleGAN, the generator not only takes randomly 

produced noise vectors as input, but also applies a 

truncation approach to the noise vector before processing 

it. Afterwards, the synthetic photos that are produced are 

stored in the designated directory. 

In DCGAN, the procedure is almost same to Vanilla 

GAN. Randomly produced noise vectors are inputted 

directly into the generator model to generate artificial 

images. The outcomes are thereafter stored in the 

designated directory. Therefore, the Generate Images 

stage in these three GAN models has the identical 

objective: to produce artificial images using the acquired 

patterns from the training process. 

 

Figure 5. Proposed feature extraction model 

architecture 

The second step involves the phase of feature 

extraction, which includes the construction of a model as 

depicted in Figure 5. This stage comprises the extraction 

of features and the generation of output. The feature 

extraction component consists of the input layer and the 

process of extracting features. The output section 

generates feature extraction results from each model. 

Feature extraction 

The architecture design of the feature extraction model 

includes an initial input layer that is responsible for 

preprocessing the images from the dataset prior to being 

inputted into the model. Initially, the photos are processed 

and transformed into the suitable format with OpenCV. 

Subsequently, the dimensions of the photographs are 

modified to match the expected size by the model through 

the utilization of resizing techniques. Subsequently, the 

pixel values in the photos are standardized to the interval 

[0, 1] in order to assist the training process.  

Afterwards, the images are forwarded to the feature 

extraction layer, where significant features are extracted. 

Every method of feature extraction possesses a distinct 

layer architecture. For example, when extracting texture, 

the GLCM (Grey-Level Co-occurrence Matrix) is 

calculated using the Greycomatrix function from the 

skimage library. The GLCM algorithm generates features 

such as contrast, dissimilarity, homogeneity, energy, and 

correlation. In addition, to extract color information, a 

color histogram is created from the histogram layer using 

the histogram function from the OpenCV package. 

This color histogram represents the distribution of 

pixel frequencies in the RGB color space. Meanwhile, the 

HOG Descriptor Layer utilizes the OpenCV library to 

extract the HOG descriptor for HOG feature extraction. 

This layer utilizes the Histogram of Oriented Gradients 

(HOG) method for extracting features. HOG examines the 

distribution of intensity gradients within blocks of an 

image. Every layer architecture requires the adjustment of 

specific parameters, including the number of histogram 

bins, HOG cell size, and other factors. 

Output 

Within the Output part, every feature extraction model 

showcases the extracted features and conducts an analysis 

of the disparities between datasets, using the retrieved 

features as a basis. In the Texture Feature Extraction model 

(GLCM), a feature vector that represents the texture 

properties of the images is recorded. Additionally, a 

histogram of the texture features is generated to visually 

illustrate the distribution of these feature values. 

Subsequently, the mean texture attributes are calculated 

for each dataset, and the disparity in mean texture 

attributes between the two datasets is quantified to 

emphasize the distinctions in texture characteristics. 

Additionally, in the Color Feature Extraction model 

(HSV Histogram), histograms of colors are extracted for 

each HSV color channel from the photos. These histogram 

findings are then shown to visually represent the 

distribution of colors within the dataset. The color 

histograms are analyzed to identify the highest values, 

which represent the dominating colors in the photos. 

Moreover, the disparities in the maximum values of the 

color histograms of the two datasets are determined, and 

the % difference is generated to illustrate the variances in 
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color between the datasets. 

Additionally, the HOG Feature Extraction model 

presents the recovered HOG features from the photos in 

conjunction with the original images, allowing for the 

visualization of the extracted texture patterns. The matrix 

values of the Histogram of Oriented Gradient (HOG) 

features are also displayed to offer additional 

understanding of the feature representation. 

In addition, the HOG feature values from both datasets 

are calculated and utilized to determine the cosine 

similarity between the HOG feature matrices of the two 

datasets. The cosine similarity values are utilized to 

quantify the percentage disparity between the datasets, 

based on the recovered HOG features, hence emphasizing 

the variations in texture patterns between the two datasets. 

Thus, in the Output phase, every feature extraction model 

provides pertinent information and crucial analysis of 

disparities to comprehend the properties of the dataset. 

III.  RESULT AND DISCUSSION 

GAN model loss result 

The GAN modeling was performed for 20, 40, 60, 80, and 

100 epochs, with the goal of optimizing the performance of 

each model in generating images in the minority class below 

9999.  

 

Figure 6. Plot of Generator and Discriminator 

Loss for Vanilla GAN Model over 100 Epochs 

The Vanilla GAN model exhibits diverse patterns in the 

performance of both the Generator and Discriminator during 

100 epochs, as depicted in Figure 6. At the beginning, the 

Generator shows a substantial reduction in loss, dropping 

from roughly 9.19 in the first epoch to around 3.74 by the 

10th epoch. This suggests an enhancement in the quality of 

the generated images. Nevertheless, the Discriminator 

continuously displays a minimal and stable loss, indicating 

its proficient capability to accurately differentiate between 

authentic and counterfeit photos. Generator and 

Discriminator loss exhibit changes throughout training, with 

certain instances displaying abrupt variations, such as at 

epoch 47. These fluctuations could potentially signify 

problems such as mode collapse or training instability. 

Loss fluctuations can arise due to issues such as 

inadequate learning rates, insufficient data variance, or 

imbalanced strength between the Generator and 

Discriminator during training. 

By the end of the training process, the Vanilla GAN 

model demonstrates that the Generator has achieved a 

minimal loss of around 0.37, indicating that it has converged 

towards generating images of the desired quality. However, 

the Discriminator currently had a loss of approximately 1.26. 

Although there was some progress from its initial loss, there 

were still variations that suggested difficulties in reliably 

differentiating between real and false images. 

Figure 7 displays the loss plot of the generator and 

discriminator components of the DCGAN model across 100 

epochs. The loss reported throughout the 100 epochs of 

DCGAN training exhibits a noteworthy trend. 

 

Figure 7. Plot of Generator and Discriminator 

Loss for DCGAN Model over 100 Epochs 

During the initial phase of training, the generator 

exhibited a significant loss of around 5.76 in the first epoch. 

However, this loss rapidly diminished as subsequent epochs 

were completed. This suggests that the generator began to 

generate images that closely resembled the actual data as its 

capacity to alter the noise input enhanced. 

Nevertheless, there were instances where there were 

sudden increases or decreases in the loss of both the 

generator and discriminator. During the 6th epoch, the 

generator encountered a rapid increase in loss, reaching a 

value of 4.06. This suggests the occurrence of a mode 

collapse, where the generator fails to generate diverse 

images that can deceive the discriminator. 

In the last epoch, the generator had a loss of 3.62 while 

the discriminator had a loss of 0.72. Overall, this suggests 

that the generator has acquired the ability to generate 

superior images in comparison to the initial stages of 

training, while there is still potential for further 

enhancement. Conversely, the discriminator has effectively 

acquired the ability to differentiate between authentic and 

synthesized images, as evidenced by its minimal loss, which 

indicates its proficiency in this task. 

DCGAN tends to show greater fluctuations in loss during 

training. This can be attributed to the higher complexity of 

the DCGAN architecture, which requires more time and data 

to stabilize during training. Vanilla GAN, with its simpler 

architecture, tends to have more stable and controlled loss. 

Figure 8 displays the loss plot for the generator and 

discriminator components of the StyleGAN model across 

100 epochs. An intriguing trend emerges from the 

documented losses across the 100 epochs of StyleGAN 
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training. During the first stage of the training, the generator 

exhibits a significant loss of approximately 7.23 in the first 

epoch. However, this loss gradually diminishes as the 

subsequent epochs unfold. This suggests that the generator 

is beginning to generate images that have a stronger 

resemblance to the original data as its capacity to modify the 

noise input enhances. 

 

Figure 8. Plot of Generator and Discriminator 

Loss for StyleGAN Model over 100 Epochs 

Nevertheless, there are intermittent instances where the 

generator and discriminator losses experience abrupt 

increases or decreases. At epoch 15, the generator 

encounters a sharp increase in loss, reaching 6.80, 

suggesting a potential occurrence of mode collapse or a 

situation where the generator fails to generate enough 

diverse images to deceive the discriminator. The variations 

seen also indicate the difficulties encountered in training the 

StyleGAN model, particularly when using a dataset 

consisting of photos with limited diversity. 

In the last epoch, the generator had a loss of 2.45 while 

the discriminator had a loss of 0.65. Overall, this suggests 

that the generator has acquired the ability to generate 

superior images in comparison to the initial stages of 

training, while there is still potential for further 

enhancement. The discriminator, however, has achieved a 

high level of proficiency in distinguishing between authentic 

and synthesized images, as seen by a loss value close to 0.5, 

which signifies its effectiveness in this objective. 

StyleGAN tends to show more significant fluctuations in 

loss during training compared to DCGAN. This can be 

attributed to the higher complexity of the StyleGAN 

architecture and the use of techniques such as style 

modulation and noise injection, which require more time and 

data to stabilize during training. DCGAN, with its simpler 

architecture, tends to have more stable and controlled loss. 

However, StyleGAN has the potential to generate higher 

quality images with greater variation if the challenges in 

training stability can be overcome. 

The StyleGAN model encounters challenges in 

generalizing and producing images with adequate variation 

when working with a dataset that exhibits low variability. 

Mode collapse can occur when the generator consistently 

produces images that are highly similar, resulting in a 

decrease in the quality and variety of the created images. 

Table 1 displays the scores obtained from the Structural 

Similarity Index Method (SSIM). Figure 9 illustrates the 

graph of SSIM scores for each GAN model, which were 

calculated using Equations 11-14. The GAN model 

exhibits a progressive rise in SSIM scores from epoch 20 

to 80, reaching a maximum of 0.5261. Nevertheless, by 

epoch 100, the Structural Similarity Index (SSIM) drops to 

0.4986, suggesting the presence of overfitting or 

fluctuations in the generated image's quality. The DCGAN 

model consistently maintains steady scores throughout all 

epochs, exhibiting somewhat higher values in comparison 

to the Vanilla GAN. The epoch 60 yielded the maximum 

score of 0.5333, indicating a marginal enhancement in the 

quality of the created photos. DCGAN has superior 

consistency in comparison to Vanilla GAN. 

SSIM score 

Table 1. SSIM score 

 

 

Figure 9. Plot of SSIM Scores for GAN Models 

The StyleGAN model exhibits an upward trend in SSIM 

scores from epoch 20 to 40, followed by a modest decline 

at epoch 60. Epoch 80 has a notable decrease, with a score 

of 0.4674, suggesting possible problems in training or 

image quality during that epoch. At epoch 100, the SSIM 

score increases to 0.5221, indicating a restoration in image 

quality. 

Texture 
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Table 2. Results of texture feature extraction 

 
The texture feature extraction findings in Table 2, 

derived using Equations 6-8, which measure contrast, 

homogeneity, and entropy, indicate that Vanilla GAN 

achieves a relative similarity score of 53% at epoch 60, 

indicating its best performance. At this particular point in 

time, the images produced by Vanilla GAN bear the closest 

resemblance to the class labeled as 9999. 

The Vanilla GAN achieves its lowest relative similarity 

score at epoch 100, with a value of 35%. Currently, the 

generated photos exhibit the least resemblance to the class 

below 9999. The observed outcome is consistent with the 

SSIM analysis, which indicates that the score varies but 

exhibits an overall increase and subsequent decrease by 

epoch 100. Although there were variations in the relative 

similarity scores, epoch 60 exhibited the highest level of 

performance. 

The optimal epoch for texture feature extraction in 

DCGAN is epoch 80, yielding a relative similarity score of 

49%. The current outcome is marginally greater than the 

one obtained at epoch 20, which reached a 48% success 

rate. These statistics are still lower than the maximum 

results attained by the Vanilla GAN model. 

DCGAN has superior stability in comparison to Vanilla 

GAN and StyleGAN, while achieving a maximum score of 

just 49% and a minimum score of 41% at epoch 60. The 

StyleGAN model at Epoch 20 excels at extracting texture 

features, achieving a relative similarity of 52%. 

Nevertheless, the performance of StyleGAN exhibits a 

deterioration, as the results consistently diminish from 

epoch 20 to epoch 100. 

Color 

Table 3. Results of color feature extraction 

 
Table 3 displays the outcomes of extracting color 

features from the three GAN models, as derived using 

Equations 2-5. The ideal number of epochs for Vanilla 

GAN in color feature extraction is 60, resulting in a relative 

similarity of 72%. The relative similarity value increases 

steadily from epoch 20 to epoch 60, but then declines 

between epochs 80 and 100. 

According to the findings, the model achieved a 

minimum relative similarity value of 51% at epoch 20. The 

current result is only 1 percentage point lower than the 

result at epoch 100, which shown a decrease beginning at 

epoch 80. The degree of similarity at epoch 100 is 52%. 

The optimal epoch for the DCGAN model is 100, achieving 

a relative similarity value of 61%. The value reached its 

peak in epoch 100, following a fall in performance from 

epoch 20 to 80. 

The optimal value in this model remains lower than the 

comparative similarity value of Vanilla GAN. The epoch at 

which the highest relative similarity value is observed in 

StyleGAN is epoch 40, with a value of 53%. StyleGAN 

ranks last among the three models in terms of relative 

similarity for color characteristics. This model has a very 

consistent behavior, with its peak similarity value reaching 

just 53% and its lowest similarity value occurring at epoch 

100, with a value of 48%. 

The results of Histogram of Oriented Gradient (HOG) 

feature extraction for each GAN model derived using 

Equations 9 and 10 are displayed in Table 4.4. The Vanilla 

GAN model produces surprising results, with a relatively 

high similarity score of up to 90% at epoch 80. The 

accuracy reached 75% at epoch 20, but experienced a 

considerable decline to only 10% at epoch 40. 

Subsequently, there was a fluctuation in performance, with 

the similarity reaching 86% at epoch 100, which was lower 

than the previous 90%. 

HOG 

Based on the findings shown in Table 4, it is evident 

that the Vanilla GAN model encountered instability 

throughout the training process. 
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Table 4. Results of HOG feature extraction 

 
The DCGAN model exhibits stability across a spectrum 

of relative similarity values ranging from 49% to 52%. The 

similarity between epochs 20 and 60 shows a significant 

increase, reaching a peak relative similarity of 52%. 

Nevertheless, epochs 80 and 100 observed a marginal 

decline to 50%. 

The DCGAN model continues to exhibit relatively low 

similarity results compared to the Vanilla GAN model, 

ranging from 75% to 90%. The StyleGAN model exhibits 

a gradual and consistent trend in the outcomes. The initial 

level of similarity is 37% at epoch 20 and gradually rises 

to 56% by epoch 100. Epoch 100 exhibits the highest 

performance, achieving a relative similarity of 56%. 

Although there is a small variation in results, this still 

represents the greatest relative similarity across all epochs 

for StyleGAN. Based on these findings, StyleGAN exhibits 

a positive trend in performance, however its relative 

resemblance to Vanilla GAN is still distant. 

IV. CONCLUSION 

Conclusion 

The Vanilla GAN model at epoch 60 has been determined 

to be the most effective at generating images with a base of 

9999, based on feature evaluation, SSIM scores, synthesis 

image quality, and loss pattern. The architectural simplicity 

of this model allows it to effectively capture minimal 

variations in the dataset, giving it an advantage over more 

intricate designs such as DCGAN and StyleGAN. 

Additional optimization and architectural tweaks could 

further increase results, particularly for datasets with 

minimal variability, as utilized in this work. 

Suggestion 

Future studies should prioritize increasing image 

variation to enhance the model's capacity to collect 

diverse and pertinent information, based on the 

completed research. To improve VanillaGAN, one can 

better its performance by improving the architecture, 

increasing the number of epochs and batch size, and 

implementing regularization techniques to address 

overfitting. To strengthen the power of the DCGAN 

model to capture more complicated aspects, one can 

incorporate additional layers and utilize more 

advanced architectural techniques. StyleGAN 

necessitates targeted refinements for color 

characteristics by incorporating additional layers that 

specifically address color aspects and pixel values 

inside the photos. 
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