

THE INFLUENCE OF GIMKIT MEDIA ON ELEMENTARY SCHOOL STUDENTS' LEARNING INTEREST

Maghfiroh Sulthon Madani ^a, Dya Ayu Agustiana Putri ^b, Eka Yuliana Sari ^c

^a Bhinneka University PGRI Tulungagung

Correspondence: maghfirohsulthon1@gmail.com

Abstract

This study examines the effect of using Gimkit learning media on the learning interest of elementary school students. Using a quantitative survey method, data were collected through a questionnaire given to 54 students. The results showed that the use of Gimkit had a significant positive effect on students' learning interest, with statistical analysis revealing a p-value of less than 0.001. These findings highlight the importance of interesting and interactive learning media in increasing students' motivation and participation in the learning process. This suggests that the application of innovative educational tools such as Gimkit can effectively improve students' learning interest and learning outcomes.

Abstrak

This study examines the effect of using Gimkit learning media on the learning interest of elementary school students. Using a quantitative survey method, data were collected through questionnaires given to 54 students. The results showed that the use of Gimkit had a significant positive effect on students' learning interest, with statistical analysis revealing a p-value of less than 0.001. This finding highlights the importance of engaging and interactive learning media in increasing students' motivation and participation in the learning process. This suggests that the implementation of innovative educational tools such as Gimkit can effectively improve students' learning interest and learning outcomes.

Keywords: Learning Media; Gimkit; Student Learning Interests;

Introduction

Education is one of the aspects that is important in life and cannot be separated from it. Education is a planned, structured and deliberate effort to reach a condition or standard of interesting learning so that students can actively show interests and talents. The role of teachers in education is as teachers in learning no off from the role of students as learners (Edy Wahyu Wibowo, 2020).

Education holds a very important role in the learning process, teaching participants to become educated students, good in religious fields, as well as knowledgeable. Self-education is meant for the public to undergo everyday life in society. As it develops knowledge and technology, education becomes something important for humans to welcome development, second matter the role of education is for growing and developing the potential that has been There is in source of power a human activity through study and teaching (Junaidi, 2019).

Based on the theory above, it can be concluded that education is a purposeful learning process for developing the potential of someone fully. Education can usually be called teaching,

because education generally needs teaching, and every individual is obliged to educate. Learning process activities for conveying material to students need an effort to increase understanding and the results study. Improving understanding of participants can be done by giving a stimulation so that students have more Spirit in study that involves developing tools to evaluate proper learning for use (Andi Hartono, 2022).

Evaluation is important in organizational education. Efforts to improve quality education can be achieved through improving quality learning and quality assessment. Quality learning can be seen from the results evaluation. Therefore, teachers need to evaluate learning. Teachers must play a role as a deep spearhead in the implementation of education and evaluation learning in the field (Rizqi Yanalul Barokah, 2021). Assessment results learning can be used to determine whether or not the educational process will succeed. More education, good and advanced, needs to improve the quality of learning and assessment processes learning (innovation). Process achievement results evaluation is good learning; teachers need to have valid and practical tools to reach their purpose.

Gimkit can become a valid and effective evaluation if used in a way that is correct and true. Elements of gamification, flexibility, and interactivity can increase motivation, interest and interaction with students in the learning process. Gimkit is one digital platform that can be used to help the learning process and at the same time for doing assessments. The Gimkit platform can be used for various questions or quizzes online, with features such as interesting online games. Digital platforms can be accessed using a smartphone, tablet, cell phone, or laptop (Rahmawati & Solfarina, 2023). This platform makes it easier for teachers to do assessments in an automatic way, does not take much time and is efficient. Implementation of Gimkit on the assessment conducted is very effective seen from many students who actively interact in workmanship questions and games, interactive competition said. This can become an innovation to attract students' interest in learning development and also make the assessment more interesting.

Effective learning not only focuses on the process of knowledge transfer but also on the development of skills of critical thinking, creativity, problem-solving, and collaboration. Gimkit is designed to fulfill the objective of learning more widely. Using Gimkit can make students not only learn from material lessons, but also train for thinking fast, work the same in a team, and manage time effectively and efficiently. Gimkit can also increase motivation to study, improve trust in yourself, and create a positive and engaging learning atmosphere. Gimkit media development in learning makes the atmosphere of study more lively and fun.

Based on results from an interview with one of the teachers at Tanggulwelahan 2 Public Elementary School, information was obtained about evaluation learning used at Tanggulwelahan 2 Public Elementary School, which is an evaluation process learning often considered as boring and monotonous tasks for the students. From question evaluation, the teacher's daily routine is usually in the form of material taken from a book, a smart / package used by students. Evaluation tools such as learning appearance already certain level of minimal enthusiasm from study students, besides that makes the class non-conducive, requiring a relatively long time and can trigger fraud in the implementation process of evaluation learning. Participants, students and teachers can spend a lot of time seeing the results of students who make lots of students feel bored during the ongoing evaluation process (Syaifulloh, 2020). Viewed from the problems found, researchers decided to conduct research in the form of the influence of Gimkit media on elementary school students' interest in learning, because it can help make more changes good for improve the quality of education. Gimkit has the characteristics in that there are games, themes and music to entertain in the learning process. Application Gimkit can enter questions in the form of online games, so that the learning process can become more fun. Application Gimkit. This is free so that users more freely For use the application The application Gimkit is normally used on computers or on mobile phones (Winda Al Muzaimah, 2022). Based on the problem, the

above explanation, then can be taken A research entitled "The influence of gimlet media on elementary school students' interest in learning."

Research methods

Instruments

This is an instrument of student learning interest in the form of questionnaire. An instrument is said to be reliable if score observations have high correlation with the actual score. Next stated that reliability is the coefficient of correlation between two scores observations obtained from results measurement using parallel tests. Thus, the understanding obtained from the statement is reliable if the results measurement approaches the state of the participant's actual test (Retnawati, 2016). Related instruments with variables that were tested on 54 students. Reliability using the Factor: Reliability Analysis test on the JAMOVI 2.3.2 application. Determination level classification, Cronbach's Alpha coefficient is presented in the table, Cronbach's Alpha coefficient (Guilford, 1956), which includes:

Tabel 1. Klasifikasi Koefesien Cronbach's Alpha

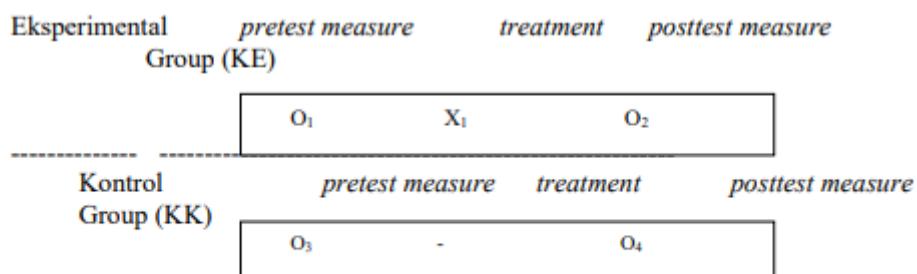
Koefesien Cronbach's Alpha	Interpretasi Koefesien Cronbach's Alpha
0,40 – 0,69	reliabilitas sedang
0,70 – 0,89	reliabilitas tinggi
0,90 – 1,00	reliabilitas sangat tinggi

(Guilford, 1956)

Reliability (U) of a test is generally expressed in a numerical form, coefficient of -1.00 dU/d +1.00. The coefficient tall shows high reliability. On the other hand, if the coefficient is something test low, so the reliability test is low. If the reliability is perfect, meaning the coefficient of reliability is +1.00. The expectation is that the coefficient of reliability is positive. Reliability is also related to error measurement. Reliability tall shows minimal errors in getting the results and measurement of value. The more reliable something instrument, the smaller the error measurement, and vice versa. increasingly small the reliability score increases, the more big measurement results (Retnawati, 2016).

This study uses of validity construct is validity which shows to what extent the instrument captures something abilities and constructs that are intended to be measured. Procedure validation construct started from something identification or limitation about desired variables measured and stated in form construct logic based on the theory about variables from the theory. This resulted in some practical conclusions about the results of value under certain conditions, and the consequences of this are what will happen when tested. If the result is in accordance with hope, the instrument considers its own validity a good construct (Retnawati, 2016). In this research, determine validity using EFA. EFA is used when the measurement model from a constructed instrument is still searching for or has not been explored (Retnawati, 2016). Furthermore, computers compile the mathematical variance and covariance, then count eigenvalues. These eigenvalues are then used to count the percentages of variances that are displayed, at the same time, to draw a scree plot (Retnawati, 2016). Determination validity construct with the use of JAMOVI 2.3.2 application.

On a trial product operational study with a quasi-experimental design. Two prerequisite tests must be done before analysis is implemented, namely the normality test, done with the objective of knowing if the data used from each variable has been normally distributed or not. Normality test done using data programs about interest study students (questionnaire), who were treated to 2 classes, that is, class control (KK), and class experiment (KE), then tested statistics using Jamovi 2.3.28 Shapiro-Wilk Multivariate Normality Test to see prerequisite normality. According to Sugiyono (2007:173), if $p > 0.05$, then the data is normally distributed,


and vice versa, if $p < 0.05$, then the data is not normally distributed. Normality test carried out on pretest and posttest data of students. If sig value > 0.05 , then H_0 is accepted and H_1 is rejected, whereas. If the sig value < 0.05 , then H_0 is rejected and H_1 is accepted at the level of significance 0.05. The criteria hypothesis and its alternatives are as follows:

H0: Data is normally distributed
H1: Data is not normally distributed

The homogeneity test is done to determine whether the samples used in the study originate from the same variance or not. Homogeneity test done using the Jamovi 2.3.28 program. Homogeneity test determined by the level of significance (sig.), if value (sig.) > 0.05 , then the data is stated homogeneous, and if value (sig.) < 0.05 , then the data is stated non-homogeneous. Homogeneity test carried out on pretest and posttest data of students. If the sig value > 0.05 , then H_0 is accepted, and H_1 is rejected. If the sig value < 0.05 , then H_0 is rejected and H_1 is accepted at the significance level 0.05. The criteria hypothesis and its alternatives are as follows:

H0: Group variance homogeneous
H1: Group variance No homogeneous

Methods in the trial field use a non-design equivalent control group design, which is almost the same as the pretest-posttest control group design described in the picture, as follows (class control and experiment):

Gambar 1. Quasi-Experimental Design dengan Nonequivalent Control Group Design (Sugiyono, 2010: 116)

The t-test is selected as a method of analysis for evaluating the difference in average value between the control group and the experimental group.

Testing hypothesis.

This is done after fulfilling the condition prerequisites, which include t-tests as well as analyzing the influence of independent variables on dependent variables. In research, this is the type of t-test used in the Independent Sample T-Test, which aims to evaluate significant differences between the control group and the experimental group.

The testing process uses device software Jamovi version 2.3.28. Criteria reception or rejection hypothesis (H_0) is based on a significance level of 5%. If the value significance > 0.05 , then H_0 is accepted, indicating there is no significant difference. On the other hand, if the mark significance < 0.05 , then H_0 is rejected, indicating a significant difference. The hypothesis study is as follows:

1. **H₀**: There is no significant influence on the test interest in learning between participant students who follow learning using quiz learning media with participant students who do not use Gimkit learning media. (**H₀: $\mu_1 = \mu_2$**)

2. **Ha:** There is a significant effect on the test interest in learning between participant students who follow learning using Quizizz learning media with participant students who do not use Gimkit learning media. ($H_1: \mu_1 \neq \mu_2$)

Based on the hypothesis that has been made, so criteria used in testing can be explained as follows:

H_0 is accepted if $p\text{-value (sig)} > 0.05 (\alpha)$ or H_0 is rejected if $p\text{-value (sig)} < 0.05 (\alpha)$
 H_a is accepted if $p\text{-value (sig)} < 0.05 (\alpha)$ or H_a is rejected if $p\text{-value (sig)} > 0.05 (\alpha)$

Research Results and Discussion

Instruments used in the study. This is an instrument of learning interest in the form of a questionnaire consisting of 15 items. A questionnaire was tested on 54 students 4th-grade school, based on known reliability and validity instruments used. Based on the results of the instrument test, data ability to think creatively mathematically in the JAMOVI application is obtained results as explained as follows:

Table 1. Scale Reliability Statistics of the Instrument Ability Think Creative Mathematical

	Mean	Cronbach's α
scale	4.17	0.816

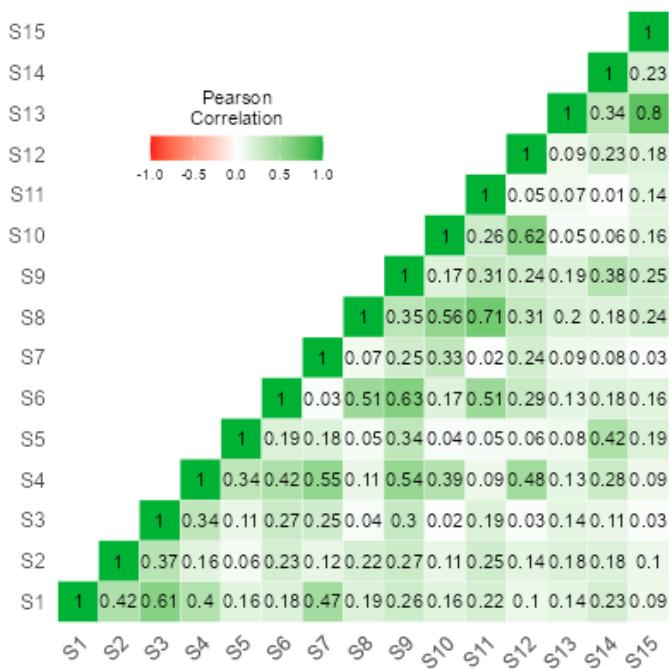

The student learning interest questionnaire instrument has a reliability level of 0.901, as indicated by the *Cronbach's Alpha coefficient value* through the JAMOVI application. This value indicates well-measured data reliability. Based on the classification of *Cronbach's Alpha reliability levels* according to the interpretation table (Guilford, 1956), a coefficient of 0.901 is in the high reliability category. Thus, this high coefficient reflects that the instrument has good reliability (Retnawati, 2016).

Table 2. Instrument Item Reliability Statistics Ability Think Creative Mathematical

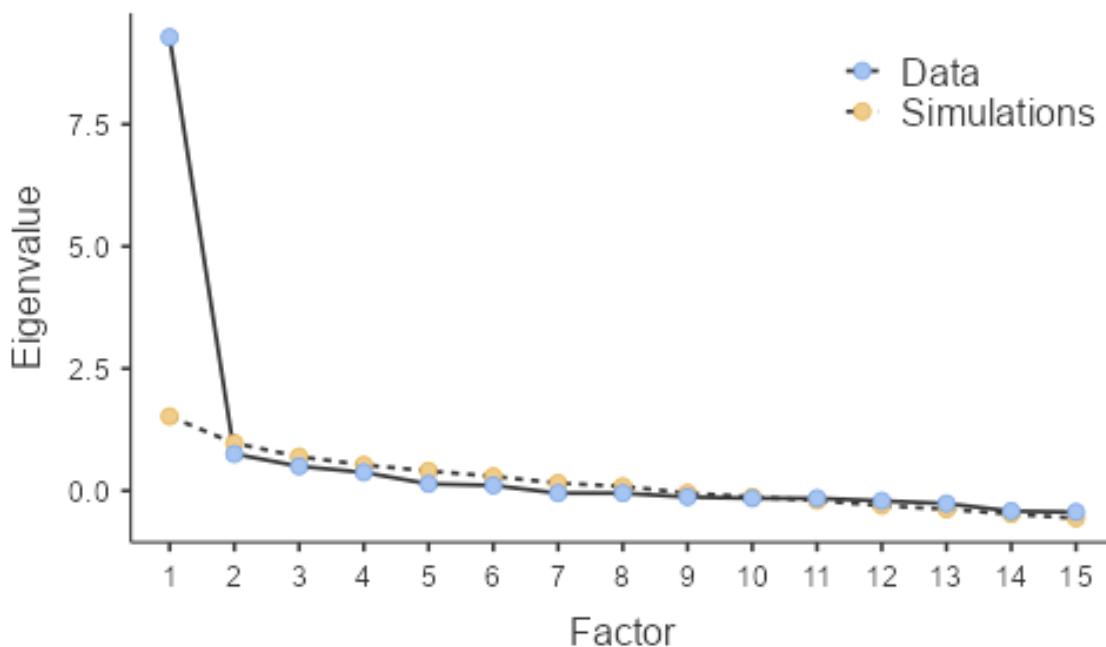
	Mean	Item-rest correlation
S1	3.81	0.490
S2	4.09	0.384
S3	4.15	0.382
S4	4.20	0.584
S5	4.31	0.304
S6	4.11	0.529
S7	4.17	0.358
S8	4.20	0.506
S9	4.28	0.620
S10	4.30	0.403
S11	4.26	0.392
S12	4.39	0.400
S13	3.96	0.347
S14	4.26	0.385
S15	4.11	0.366

In this case, item-rest correlation measures to which each item in the instrument correlates with the total score instrument itself. The correlation results (positive) indicate that the item can be used to reflect the concept measured by the instrument, whereas low correlation (negative) can show existence problems in construction or formulation questions that must be thrown away or replaced (Itani et al, 2021).

Based on the table, they can see that the item-rest correlation shows positive values all. Item-test correlation on 15 test items, all of which have marked positives, can give a strong image related to quality instrument measurement. Correlations are positive between each item and the total score test, showing that all questions or statements in a way consistently support the draft or abilities measured by the test. Positive results like this can be considered as an indication that the instrument test has been designed with a good and capable measure of desired construction in an accurate way. This gives the belief that each item individually effectively evaluates desired aspects, and the total score test reflects good-level ability and creativity, mathematically measured. Thus, after testing with the JAMOVI app shows that the reliability instrument test makes the creative mathematical show category reliable.

Figure 2. Correlations Headmap Reliability Instrument interest in learning

In this research, determination validity using EFA is still unclear whether Gimkit learning media influences students' learning interest. Analysis results show Bartlett's Test of Sphericity value is < 0.01 . Retnawati (2016) explains that a p-value less than 0.01 shows that the size used in the analysis factor is sufficient enough


Table 3. Bartlett's Test of Sphericity of Instruments: interest in learning

Bartlett's Test of Sphericity

χ^2	df	p
348	105	< .001

The number of included factors in the instrument can be known from the scree-plot and Eigenvalues, so the obtained graph shows steep and gentle slopes (Retnawati, 2016). The following Scree Plot Analysis Instrument: Think Mathematical Creativity.

Scree Plot

Figures 3. Scree Result Of Exploratory Factor Analysis Results Instrument Interest In Learning.

Observing the results of the scree plot that there is 1 steep slope, so the instrument tests correctly only for measuring the ability to think creatively in mathematical students. This is also reinforced with eigenvalues, namely, only 1 factor stands out, it's a value higher than the other factors, which are explained in the table as follows:

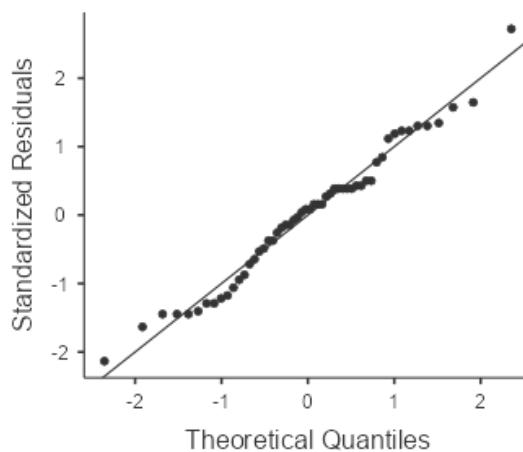
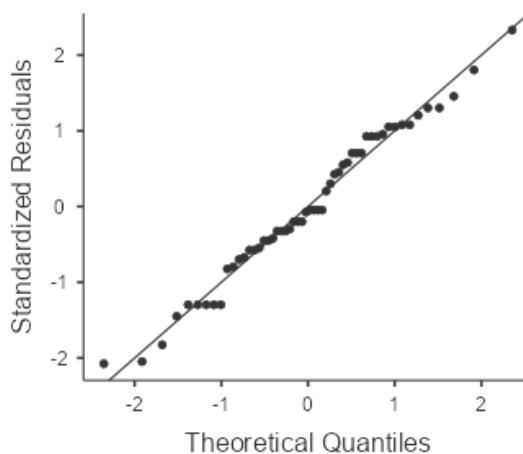
Table 4. Initial Eigenvalues of Exploratory Factor Analysis Instrument Think Creative Mathematical

Initial Eigenvalues

Factor	Eigenvalue
1	9.2830
2	0.7514
3	0.4998
4	0.3737
5	0.1395
6	0.1082
7	-0.0513
8	-0.0513
9	-0.1290
10	-0.1562
11	-0.1562

Initial Eigenvalues

Factor	Eigenvalue
12	-0.2088
13	-0.2640
14	-0.4181
15	-0.4377



Based on the analysis factor, exploratory research said, can conclude that instruments in the form of questionnaires are valid for measuring students' learning interests in general and have been proven in an empirical way.

One of the formulation problems in the study. This study influences the use of Quizizz learning media towards interest study participants educate 4th-grade school basic subjects. For answer formulation problems, a method study quasi-experiment with design pretest and post-test design. In this research, this is the results of the pretest and posttest were analyzed to see the influence of the treatment given. The study involved 54 participants divided into two groups, namely a class control consisting of 27 participants who were educated and using learning models conventional, as well as an experiment consisting of 27 students who used learning media Gimkit. Class control is implemented at SDN 1 Keboireng, meanwhile, class experiment is implemented at SDN 1 Besuki. Instruments used in the form of 15 questions that have been tested for validity and reliability, for measuring the interest of study participants in education. Because research uses a pretest-posttest design, data from pretest and posttest for the second group analyzed in a way statistics use Jamovi 2.3.28 to inspect normality and homogeneity as a prerequisite analysis, and further analysis was conducted.

Table 5. Normality Test (Shapiro-Wilk)

	W	p
Pre Test	0.980	0.504
Post Test	0.982	0.580

The table shows a p-value of 0.504 in the pretest and 0.580 in the posttest, more big of 0.05. This shows that the data is normally distributed and H_0 is accepted. The QQ Plot Assessing Multivariate Normality is shown in the Figure distribution point related to normality with the data presented, can be shown in the image below.

Figure 4. QQ Plot Assessing Multivariate Normality Pre Test**Figure 4. QQ Plot Assessing Multivariate Normality Post Test**

From figures 3 and 4, it can be seen from dot, dot, dot the approaching parallel lines so that we can conclude that the error is normally distributed. The next homogeneity test was carried out.

Table 6. Homogeneity of Variances Test (Levene's)

	F	df	df2	p
Pre Test	0.355	1	52	0.554
Post Test	0.177	1	52	0.676

The table presents a p-value of 0.554 in the pretest and 0.676 in the posttest, more big of 0.05. This shows that the data is homogeneous and H_0 is accepted. The prerequisite test For can use the independent sample t-test is fulfilled, namely, the data is normally distributed and homogeneous, so that testing. Next, an independent sample t-test was conducted.

Table 7. Independent Samples T-Test

		Statistic	df	P
Pre Test	Student's t	-0.263	52.0	0.794
Post Test	Student's t	-5.109	52.0	< .001

Note. $H_a \mu_1 \neq \mu_2$

The Interpretations are as follows:

1. H_0 : There is no significant influence on the test ability. Think creatively between students who follow learning using the module learning material five senses, and students who do not use the module learning material, the five senses ($H_0: \mu_1 = \mu_2$)
2. H_a : There is a significant influence on the ability to think creatively between students who follow learning using module learning material, the five senses, with students who do not use the module learning material's five senses. ($H_1: \mu_1 \neq \mu_2$)

Based on the hypothesis that has been made, so criteria used in testing can be explained as follows:

H_0 is accepted if p-value (sig) > 0.05 (α) or H_0 is rejected if p-value (sig) < 0.05 (α)
 H_a is accepted if p-value (sig) < 0.05 (α) or H_a is rejected if p-value (sig) < 0.05 (α)

From the table, those 7 are visible, and the P value is 0.794. Therefore p p-value > 0.05, then H_0 is accepted, so we can conclude No there is no influence, whatever your ability, think creative mathematical student school base class experiment with class control at the time pretest was conducted. Meanwhile, at the time the posttest was conducted, in classes, the control and experiment groups were. Based on Table 7, the p-value is <0.001, which means it is more or less low (< 0.05). The p-value <0.05 means H_0 is rejected, so we can conclude H_a is accepted. With this, there is a significant influence on the test ability to think creatively between students who follow learning using module learning material, the five senses, with students who do not use the module learning material five senses. ($H_1: \mu_1 \neq \mu_2$)

Conclusions and Recommendations

Use of learning media Gimkit has proven to have a positive impact on the interest of study participants educated at Grade IV Elementary School. Research shows that participant students who use Gimkit in the learning process own interest learn more compared to participant students who implement method learning conventional. The results of the t-test analysis show existence significant difference in the interest of study participants, with p-value < 0.05, which indicates that the learning media is interactive and interesting can increase participant involvement in the student learning process.

References

Ayundasari , V. (2024). *DEVELOPMENT OF ANDROID-BASED EDUCATIONAL GAME LEARNING MEDIA FOR THE FIVE SENSE MATERIALS OF GRADE IV SDN I TAWING* (Doctoral dissertation, Universitas Nusantara PGRI Kediri).

Nabilah, DF, Faradita , MN, & Mirnawati , LB (2023). DEVELOPMENT OF AN EVALUATION TOOL ASSISTED WITH THE GIMKIT APPLICATION FOR

LEARNING SCIENCE IN THE INDEPENDENT CURRICULUM IN PRIMARY SCHOOLS. *Pendas: Journal Elementary Education Science* , 8 (3), 5726-5744.

Levia, T., Azis, A., Safitri , SA, & Kamal, M. (2024). DEVELOPMENT OF GIMKIT-BASED FORMATIVE ASSESSMENT MEDIA WITH THE FOUR-D MODEL TO IMPROVE STUDENT PARTICIPATION IN MUKJIZAT MATERIAL AT MTS DARUL AMIN, PALANGKA RAYA CITY. *ADIBA: JOURNAL OF EDUCATION* , 4 (4), 752-763.

Pratiwi, EW (2023). *Development of Five Senses Monopoly Learning Media Containing Islamic Values for Grade 4 Elementary Schools/Islamic Elementary Schools* (Doctoral dissertation, IAIN Ponorogo).

Brillian, I., Budyartati , S., & Yanto, ENA (2024, July). The Influence Use of Learning Media Gimkit as Gamification To Indonesian Language Learning in Grade 5 Elementary School . In *NATIONAL SEMINAR ON SOCIAL, SCIENCE, EDUCATION, HUMANITIES (SENASSDRA)* (Vol. 3, No. 3, pp. 610-618).

Ramadhan, MR (2024, July). Influence Use of the ECIRR Learning Model Assisted by Gimkit Media On Students' Science Learning Outcomes Grade 4 at Sobrah Elementary School Wungu Madiun. In *NATIONAL SEMINAR ON SOCIAL, SCIENCE, EDUCATION, HUMANITIES (SENASSDRA)* (Vol. 3, No. 3, pp. 604-609).

Pamungkas , D. (2023, November). Implementation of Assisted Problem Based Learning Model Snowbrawl For Improving Interest and Learning Outcomes Grade VI Students . In *Proceedings of the National Seminar on Teacher Professional Education* (Vol. 1, No. 2, pp. 2812-2822).

Rosyid, HHA, & Wonorahardjo , S. (2025). Innovation Social Studies Learning : Development Gimkit on Hindu-Buddhist Material for Class VII. *Journal of Innovation and Teacher Professionalism* , 3 (1), 203-210.

Jayanti, AK, Listyoningrum , Y., & Nisa, AF (2024, August). Analysis The Need for Educational Game Media for Increased Motivation Study Elementary School Mathematics . In *Proceedings of the National Seminar on Elementary Education ISSN: XXXX-XXXX* (Vol. 2, No. 2, pp. 292-302).

Sa'diyah , Z., Rofi, FZ, & Nurhayati, I. (2024). DEVELOPMENT OF LEARNING EVALUATION TOOLS WITH GIMKIT APPLICATION IN SCIENCE SUBJECTS FOR STUDENTS OF ELEMENTARY SCHOOL. *Al- Adawat : Journal of Elementary School Teacher Education* , 3 (01), 66-80.